doc:user:elements:volumes:hyper_materials
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| doc:user:elements:volumes:hyper_materials [2024/05/02 11:15] – radermecker | doc:user:elements:volumes:hyper_materials [2025/05/20 15:50] (current) – C = Right Cauchy-Green tensor lacroix | ||
|---|---|---|---|
| Line 14: | Line 14: | ||
| === Parameters === | === Parameters === | ||
| - | ^ | + | ^ |
| - | | Density | + | | Density |
| - | | NeoHookean coefficient ($C_1$) | + | | NeoHookean coefficient ($C_1$) |
| - | | Initial bulk modulus ($k_0$) | + | | Initial bulk modulus ($k_0$) |
| + | | Material temperature evolution law | '' | ||
| + | | Thermal expansion coefficient ($\alpha$) | ||
| + | ===== TmNeoHookeanHyperMaterial ===== | ||
| + | <note important> | ||
| + | === Description === | ||
| + | Neo-Hookean hyperelastic law, using a '' | ||
| + | |||
| + | Here, the '' | ||
| + | |||
| + | === Parameters === | ||
| + | ^ | ||
| + | | Density | ||
| + | | NeoHookean coefficient ($C_1$) | ||
| + | | Initial bulk modulus ($k_0$) | ||
| + | | Thermal expansion coefficient ($\alpha$) | ||
| + | | Conductivity | ||
| + | | Heat capacity | ||
| + | | Dissipated thermoelastic power fraction | ||
| + | | Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | ||
| ===== MooneyRivlinHyperMaterial ===== | ===== MooneyRivlinHyperMaterial ===== | ||
| Line 32: | Line 51: | ||
| + | === Parameters === | ||
| + | ^ | ||
| + | | Density | ||
| + | | Mooney-Rivlin coefficient ($C_1$) | ||
| + | | Mooney-Rivlin coefficient ($C_2$) | ||
| + | | Initial bulk modulus ($k_0$) | ||
| + | | Material temperature evolution law | '' | ||
| + | | Thermal expansion coefficient ($\alpha$) | ||
| + | |||
| + | |||
| + | <WRAP center round important 60%> | ||
| + | **Version < 3554**\\ | ||
| + | This material has no analytical material tangent stiffness. The latter should be computed by pertubation (global or material). \\ | ||
| + | See '' | ||
| + | </ | ||
| + | |||
| + | ===== TmMooneyRivlinHyperMaterial ===== | ||
| + | <note important> | ||
| + | === Description === | ||
| + | |||
| + | Mooney-Rivlin hyperelastic law, using a '' | ||
| + | |||
| + | Here, the '' | ||
| === Parameters === | === Parameters === | ||
| - | ^ | + | ^ |
| - | | Density | + | | Density |
| - | | Mooney-Rivlin coefficient ($C_1$) | + | | Mooney-Rivlin coefficient ($C_1$) |
| - | | Mooney-Rivlin coefficient ($C_2$) | + | | Mooney-Rivlin coefficient ($C_2$) |
| - | | Initial bulk modulus ($k_0$) | + | | Initial bulk modulus ($k_0$) |
| + | | Thermal expansion coefficient ($\alpha$) | ||
| + | | Conductivity | ||
| + | | Heat capacity | ||
| + | | Dissipated thermoelastic power fraction | ||
| + | | Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | ||
| + | ===== HolzapfelGasserOgdenHyperMaterial ===== | ||
| + | |||
| + | === Description === | ||
| + | Holzapfel-Gasser-Ogden (invariant-based) anisotropic hyperelastic law, using a '' | ||
| + | |||
| + | (Quasi-)incompressibility is treated by a volumetric/ | ||
| + | |||
| + | The strain-energy density function $W$ is expressed as the sum of an **isotropic** (=**matrix**) and **anisotropic** (=**fibers**) contribution: | ||
| + | $$ | ||
| + | W\left(\bar{I}_1, | ||
| + | $$ | ||
| + | |||
| + | The **isotropic** contribution takes the form of a **generalized Neo-Hookean** model: | ||
| + | $$ | ||
| + | W_{iso}\left(\bar{I}_1, | ||
| + | $$ | ||
| + | |||
| + | The **anisotropic** contribution to the strain energy density function writes: | ||
| + | $$ | ||
| + | W_{ani}\left(\bar{I}_1, | ||
| + | $$ | ||
| + | where $k_1$[MPa] and $k_2$[-] are material parameters characterizing all fiber families in the material. $d\in[0, | ||
| + | |||
| + | More information and mathematical derivations, | ||
| + | |||
| + | === Parameters === | ||
| + | ^ | ||
| + | | Density | ||
| + | | Mooney-Rivlin coefficient ($C_1$) | ||
| + | | Initial bulk modulus ($k_0$) | ||
| + | | HGO parameter $k_1$ | ||
| + | | HGO parameter $k_2$ | ||
| + | | Fiber dissipation $d$ (optional, default=0) | ||
| + | | Direction of $1^{st}$ fiber family $\mathbf{a}^1$ | ||
| + | | Direction of $2^{nd}$ fiber family $\mathbf{a}^2$ | ||
| + | | Direction of $3^{rd}$ fiber family $\mathbf{a}^3$ | ||
| ===== NeoHookeanHyperPk2Material ===== | ===== NeoHookeanHyperPk2Material ===== | ||
| Line 53: | Line 136: | ||
| $$ | $$ | ||
| - | The deviatoric potential is computed based on a Cauchy tensor with a unit determinant: | + | The deviatoric potential is computed based on the right Cauchy–Green deformation |
| $$ | $$ | ||
| Line 61: | Line 144: | ||
| === Parameters === | === Parameters === | ||
| - | ^ | + | ^ |
| - | | Density | + | | Density |
| - | | Initial bulk modulus ($k_0$) | + | | Initial bulk modulus ($k_0$) |
| - | | Initial shear modulus ($g_0$) | + | | Initial shear modulus ($g_0$) |
| + | | Material temperature evolution law | '' | ||
| + | | Thermal expansion coefficient ($\alpha$) | ||
| ===== LogarihtmicHyperPk2Material ===== | ===== LogarihtmicHyperPk2Material ===== | ||
| Line 72: | Line 157: | ||
| Logarithmic hyperelastic law, using a '' | Logarithmic hyperelastic law, using a '' | ||
| - | The potential per unit volume is computed based on the average compressibility of the element, ($q$): | + | The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): |
| $$ | $$ | ||
| Line 86: | Line 171: | ||
| === Parameters === | === Parameters === | ||
| - | ^ | + | ^ |
| - | | Density | + | | Density |
| - | | Initial bulk modulus ($k_0$) | + | | Initial bulk modulus ($k_0$) |
| - | | Initial shear modulus ($g_0$) | + | | Initial shear modulus ($g_0$) |
| + | | Material temperature evolution law | '' | ||
| + | | Thermal expansion coefficient ($\alpha$) | ||
| ===== EvpIsoHLogarithmicHyperPk2Material ===== | ===== EvpIsoHLogarithmicHyperPk2Material ===== | ||
| Line 111: | Line 199: | ||
| ^ | ^ | ||
| - | | Density | + | | Density |
| - | | Initial bulk modulus ($k_0$) | + | | Initial bulk modulus ($k_0$) |
| - | | Initial shear modulus ($g_0$) | + | | Initial shear modulus ($g_0$) |
| | Number of the material law which defines the yield stress $\sigma_{yield}$ | '' | | Number of the material law which defines the yield stress $\sigma_{yield}$ | '' | ||
| + | | Material temperature evolution law | '' | ||
| + | | Thermal expansion coefficient ($\alpha$) | ||
| ===== FunctionBasedHyperPk2Material ===== | ===== FunctionBasedHyperPk2Material ===== | ||
| Line 133: | Line 223: | ||
| ^ | ^ | ||
| - | | Density | + | | Density |
| - | | Initial bulk modulus ($k_0$) | + | | Initial bulk modulus ($k_0$) |
| - | | Number of the hyperelastic law | '' | + | | Number of the hyperelastic law | '' |
| + | | Material temperature evolution law | '' | ||
| + | | Thermal expansion coefficient ($\alpha$) | ||
| Line 178: | Line 270: | ||
| ^ | ^ | ||
| - | | Density | + | | Density |
| - | | Initial bulk modulus ($k_0$) | + | | Initial bulk modulus ($k_0$) |
| | Number of the main viscoelastic law | '' | | Number of the main viscoelastic law | '' | ||
| | Number of the first Maxwell viscoelastic law | '' | | Number of the first Maxwell viscoelastic law | '' | ||
| | Number of the second Maxwell viscoelastic law (optional) | | Number of the second Maxwell viscoelastic law (optional) | ||
| | Number of the third Maxwell viscoelastic law (optional) | | Number of the third Maxwell viscoelastic law (optional) | ||
| + | | Material temperature evolution law | '' | ||
| + | | Thermal expansion coefficient ($\alpha$) | ||
doc/user/elements/volumes/hyper_materials.1714641330.txt.gz · Last modified: by radermecker
