Table of Contents
Hyperelastic materials
NeoHookeanHyperMaterial
Description
Neo-Hookean hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
$$ W\left(I_1,I_2,J\right) = \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right] $$
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Density | MASS_DENSITY | TO/TM |
| NeoHookean coefficient ($C_1$) | RUBBER_C1 | TO/TM |
| Initial bulk modulus ($k_0$) | RUBBER_PENAL | TO/TM |
| Material temperature evolution law | TEMP | TM |
| Thermal expansion coefficient ($\alpha$) | THERM_EXPANSION | TO/TM |
TmNeoHookeanHyperMaterial
Description
Neo-Hookean hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
Here, the TEMP parameter is not relevant anymore.
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Density | MASS_DENSITY | TO/TM |
| NeoHookean coefficient ($C_1$) | RUBBER_C1 | TO/TM |
| Initial bulk modulus ($k_0$) | RUBBER_PENAL | TO/TM |
| Thermal expansion coefficient ($\alpha$) | THERM_EXPANSION | TO/TM |
| Conductivity | CONDUCTIVITY | TO/TM |
| Heat capacity | HEAT_CAPACITY | TO/TM |
| Dissipated thermoelastic power fraction | DISSIP_TE | - |
| Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | DISSIP_TQ | - |
MooneyRivlinHyperMaterial
Description
Mooney-Rivlin hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
$$ W\left(I_1,I_2,J\right) = \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + C_2\left(\bar{I_2} - 3\right)+ \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right] $$
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Density | MASS_DENSITY | TO/TM |
| Mooney-Rivlin coefficient ($C_1$) | RUBBER_C1 | TO/TM |
| Mooney-Rivlin coefficient ($C_2$) | RUBBER_C2 | TO/TM |
| Initial bulk modulus ($k_0$) | RUBBER_PENAL | TO/TM |
| Material temperature evolution law | TEMP | TM |
| Thermal expansion coefficient ($\alpha$) | THERM_EXPANSION | TO/TM |
Version < 3554
This material has no analytical material tangent stiffness. The latter should be computed by pertubation (global or material).
See STIFFMETHOD in the element properties of Volume elements.
TmMooneyRivlinHyperMaterial
Description
Mooney-Rivlin hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
Here, the TEMP parameter is not relevant anymore.
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Density | MASS_DENSITY | TO/TM |
| Mooney-Rivlin coefficient ($C_1$) | RUBBER_C1 | TO/TM |
| Mooney-Rivlin coefficient ($C_2$) | RUBBER_C2 | TO/TM |
| Initial bulk modulus ($k_0$) | RUBBER_PENAL | TO/TM |
| Thermal expansion coefficient ($\alpha$) | THERM_EXPANSION | TO/TM |
| Conductivity | CONDUCTIVITY | TO/TM |
| Heat capacity | HEAT_CAPACITY | TO/TM |
| Dissipated thermoelastic power fraction | DISSIP_TE | - |
| Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | DISSIP_TQ | - |
NeoHookeanHyperPk2Material
Description
Neo-Hookean hyperelastic law, using a PK2 tensor.
The potential per unit volume is computed based on the average compressibility over the element, ($\theta$):
$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$
The deviatoric potential is computed based on the right Cauchy–Green deformation tensor with a unit determinant:
$$ U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right] $$
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Density | MASS_DENSITY | TO/TM |
| Initial bulk modulus ($k_0$) | HYPER_K0 | TO/TM |
| Initial shear modulus ($g_0$) | HYPER_G0 | TO/TM |
| Material temperature evolution law | TEMP | TM |
| Thermal expansion coefficient ($\alpha$) | THERM_EXPANSION | TO/TM |
LogarihtmicHyperPk2Material
Description
Logarithmic hyperelastic law, using a PK2 tensor.
The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):
$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$
The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:
$$ U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}\right):\ln \left(\hat{\mathbf{C}}\right) $$
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Density | MASS_DENSITY | TO/TM |
| Initial bulk modulus ($k_0$) | HYPER_K0 | TO/TM |
| Initial shear modulus ($g_0$) | HYPER_G0 | TO/TM |
| Material temperature evolution law | TEMP | TM |
| Thermal expansion coefficient ($\alpha$) | THERM_EXPANSION | TO/TM |
EvpIsoHLogarithmicHyperPk2Material
Description
Logarithmic hyperelastic law, using a PK2 tensor.
The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):
$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$
The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:
$$ U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}^{el}\right):\ln \left(\hat{\mathbf{C}}^{el}\right) $$
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Density | MASS_DENSITY | TO/TM |
| Initial bulk modulus ($k_0$) | HYPER_K0 | TO/TM |
| Initial shear modulus ($g_0$) | HYPER_G0 | TO/TM |
| Number of the material law which defines the yield stress $\sigma_{yield}$ | YIELD_NUM | - |
| Material temperature evolution law | TEMP | TM |
| Thermal expansion coefficient ($\alpha$) | THERM_EXPANSION | TO/TM |
FunctionBasedHyperPk2Material
Description
Hyperelastic law, using a PK2 tensor. Its function applied on the strain spectral decomposition is a user law.
The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):
$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$
The deviatoric potential is computed based on a hyperelastic user function defined in Viscoelastic laws.
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Density | MASS_DENSITY | TO/TM |
| Initial bulk modulus ($k_0$) | HYPER_K0 | TO/TM |
| Number of the hyperelastic law | HYPER_FUNCTION_NO | - |
| Material temperature evolution law | TEMP | TM |
| Thermal expansion coefficient ($\alpha$) | THERM_EXPANSION | TO/TM |
VeIsoHyperPk2Material
Description
Viscoelastic hyperelastic law, using a PK2 tensor. The law includes a main branch (spring and dashpot in parallel) and one or several Maxwell branches (spring and dashpot in series).
Each branch has its behavior corresponding to a viscoelastic law, supplied by the user.
The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):
$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$
The deviatoric potential is computed based on the viscoelastic laws :
$$ U^{dev}= U^{dev}_{\text{main,elastic}}\left(\hat{C}\right) + \sum_{Maxwell} U^{dev}_{\text{Maxwell,elastic}}\left(\hat{C}^{\text{el}}\right) $$
The dissipation potential is written as:
$$ \Delta t \phi^{dev}= \Delta t \phi^{dev}_{\text{main,viscous}}\left( \exp{\frac{\ln{\Delta\hat{C}}}{\Delta t}} \right) + \sum_{Maxwell} \Delta t \phi^{dev}_{\text{Maxwell,viscous}}\left(\exp{\frac{\ln{\Delta C^{\text{vis}}}}{\Delta t}} \right) $$
where $$ \Delta\hat{C} = {\hat{F}^n}^{-T} \hat{C}^{n+1} {\hat{F}^n}^{-1} $$
$$ \Delta C^{\text{vis}} = {{F^{\text{vis}}}^n}^{-T} {C^{\text{vis}}}^{n+1} {{F^{\text{vis}}}^n}^{-1} $$
The potentials $ U^{dev}_{\text{main,elastic}},~~U^{dev}_{\text{Maxwell,elastic}},~~\phi^{dev}_{\text{main,viscous}},~~\phi^{dev}_{\text{Maxwell,viscous}} $ are hyperelastic functions defined in Viscoelastic laws.
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Density | MASS_DENSITY | TO/TM |
| Initial bulk modulus ($k_0$) | HYPER_K0 | TO/TM |
| Number of the main viscoelastic law | MAIN_FUNCTION_NO | - |
| Number of the first Maxwell viscoelastic law | MAXWELL_FUNCTION_NO1 | - |
| Number of the second Maxwell viscoelastic law (optional) | MAXWELL_FUNCTION_NO2 | - |
| Number of the third Maxwell viscoelastic law (optional) | MAXWELL_FUNCTION_NOI | - |
| Material temperature evolution law | TEMP | TM |
| Thermal expansion coefficient ($\alpha$) | THERM_EXPANSION | TO/TM |
