Table of Contents
Plastic criteria
The PlasticCriterion
class manages the possibility to replace the default Von Mises plastic criterion by another one, described below.
VonMisesPlasticCriterion
Description
Isotropic plastic criterion (default in Metafor)
$$ \sqrt{\frac{3}{2}s_{ij}s_{ij}} - (\sigma_{vm} + \sigma_{visq} + \sigma_{grainSize} + ...) = 0 $$
Parameters
néant
Hill48PlasticCriterion
Description
Second order orthotropic plastic criterion
$$ \begin{multline} \sqrt{\frac{1}{2}} \sqrt{F (s_{22}-s_{33})^2 + G (s_{33}-s_{11})^2 + H (s_{11}-s_{22})^2 + 2 (L s_{13}^2 + M s_{23}^2 + N s_{12}^2) } \\- (\sigma_{vm} + \sigma_{visq} + \sigma_{grainSize} + ...) = 0 \end{multline} $$
where stresses are defined in an orthotropic frame.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
$ F $ | HILL48_F | néant |
$ G $ | HILL48_G | néant |
$ H $ | HILL48_H | néant |
$ L $ | HILL48_L | néant |
$ M $ | HILL48_M | néant |
$ N $ | HILL48_N | néant |
Parameter estimation (for sheet metal)
For sheet metal, the anisotropic parameters can be estimated based on tensile tests (plastic strain of around 10%). Strains are measured along the width ($ \varepsilon_{t} $) and the thickness ($ \varepsilon_{e} $). The plastic anisotropy coefficient is then defined as : $ r = \frac{\varepsilon_{t}}{\varepsilon_{e}} $
This test is done in samples cut along the 0, 45 and 90 degrees axes to define $r_{0}$ , $_{45}$ , $r_{90}$.
A planar average is then defined as : $ r_{moy} = \frac{r_{0} + 2 r_{45} + r_{90}}{4} $
Based on tensile tests, it is not possible to estimate shear through the thickness, so L and M parameters are considered equal to 3.
- $ F = \frac{2}{1+r_0}\frac{r_{0}}{r_{90}} $
- $ G = \frac{2}{1+r_0} $
- $ H = \frac{2r_{0}}{1+r_0} $
- $ L = 3 $
- $ M = 3 $
- $ N = \frac{1+2r_{45}}{1+r_0}\frac{r_{0}+r_{90}}{r_{90}} $