−Table of Contents
Failure criteria
RuptureCriterion
Description
RuptureCriterion
manages various failure criteria.
The critical value C (RUPT_CRIT_VALUE
) of a variable above which the element is broken.
The type of failure (RUPT_TYPE_CRIT
) are defined in the table below :
Name | Description |
---|---|
NOBREAK | Compute the criterion, but never break any element |
ONEBROKEN | Break an element when ONE integration point override the critical value |
ALLBROKEN | Break an element when ALL the integration points override the critical value |
MEANBROKEN | Break an element when the averaged value over the integration points override the critical value |
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Critical value | RUPT_CRIT_VALUE | - |
Type of failure | RUPT_TYPE_CRIT | - |
IFRuptureCriterion
Description
The element is broken if an InternalField
reaches a critical value. The critical InternalField
is defined with the following command, which must be added when defining the criterion:
rc.setInternalField(IF_EPL)
for a criterion based on a critical value of the equivalent plastic strain.
OneParameterRuptureCriterion
Description
Four simple rupture criteria are gathered in one single family. In order to selected one of the criteria the parameter RUPT_OP_LAW
(only parameter in this criterion) need to be defined as: COCKROFT
, BROZZO
, AYADA
or RICE
. Then, the element is broken if the variable C reaches a critical value, which is defined in each case as:
Cockroft and Latham criterion (dimensional Value) : COCKROFT2
C=∫¯εp0σ1d¯εp
Cockroft and Latham criterion (adimensional value) : COCKROFT
C=∫¯εp0σ1¯σd¯εp
Brozzo criterion : BROZZO
C=∫¯εp02σ13(σ1−p)d¯εp
Ayada criterion : AYADA
C=∫¯εp0p¯σd¯εp
Rice and Tracey criterion : RICE
C=∫¯εp0exp(32p¯σ)d¯εp
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Criterion | RUPT_OP_LAW | - |
BaoRuptureCriterion
Description
Bao-Wierzbicki criterion [1]. The element is broken if the variable C, defined below, reaches a critical value:
C=∫εpl0dεplεf
where εf is defined as:
εf={∞if pJ2≤−13P1(pJ2+13)P2if −13<pJ2≤0P3(pJ2)2+P4pJ2+P5if 0<pJ2<0.4exp(P6pJ2)if pJ2>0.4
Parameters
Name | Metafor Code | Dependency |
---|---|---|
P1 | RUPT_BAO_P1 | - |
P2 | RUPT_BAO_P2 | - |
P3 | RUPT_BAO_P3 | - |
P4 | RUPT_BAO_P4 | - |
P5 | RUPT_BAO_P5 | - |
P6 | RUPT_BAO_P6 | - |
HancockMackenzieRuptureCriterion
Description
Hancock and Mackenzie criterion [2]. The critical plastic strain εf is defined as:
εf=D1+D2exp(D3pJ2)
Parameters
Name | Metafor Code | Dependency |
---|---|---|
D1 | RUPT_HANCOCK_D1 | - |
D2 | RUPT_HANCOCK_D2 | - |
D3 | RUPT_HANCOCK_D3 | - |
JohnsonCookRuptureCriterion
Description
Johnson and Cook criterion [3]. The element is broken if the variable C, defined below, reaches a critical value: C=∫εpl0dεplεf
where εf is defined as:
εf=(D1+D2exp(D3pJ2))(1+D4ln˙εpl˙ε0)(1+D5T−TroomTmelt−Troom)
Parameters
Name | Metafor Code | Dependency |
---|---|---|
D1 | RUPT_JC_D1 | - |
D2 | RUPT_JC_D2 | - |
D3 | RUPT_JC_D3 | - |
D4 | RUPT_JC_D4 | - |
D5 | RUPT_JC_D5 | - |
˙ε0 | RUPT_JC_EPSP0 | - |
Room temperature Troom | RUPT_JC_TROOM | - |
Melting temperature Tmelt | RUPT_JC_TMELT | - |
LemaitreRuptureCriterion
Description
Lemaitre criterion [4]. The element is broken if the variable C, defined below, reaches a critical value:
C=∫εpl0(23(1+ν)+3(1−2ν)(pJ2)2)dεpl
Parameters
Name | Metafor Code | Dependency |
---|---|---|
ν | RUPT_LEMAITRE_NU | - |
GoijaertsRuptureCriterion
Description
Goijaerts criterion [5]. The element is broken if W, whose evolution law is defined below, reaches 1.
˙W=1C⟨1+ApJ2⟩(εpl)B˙εpl
where brackets are MacCaulay brackets:
⟨x⟩=12(x+|x|)
Parameters
Name | Metafor Code | Dependency |
---|---|---|
A | RUPT_GOIJAERTS_A | - |
B | RUPT_GOIJAERTS_B | - |
C | RUPT_GOIJAERTS_C | - |
MaximumPrincipalStrainRuptureCriterion
Description
Maximum Principal Strain criterion [6]. Element failure is detected differently whether the element is globally under tension of compression. It is broken if:
‖ϵI‖> RUPT_MPSTRAIN_TL
if ϵI + ϵII + ϵIII > 0
‖ϵIII‖> RUPT_MPSTRAIN_CL
if ϵI + ϵII + ϵIII < 0
where ϵI, ϵII and ϵIII are principal strains in decreasing order.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
A | RUPT_MPSTRAIN_CL | - |
B | RUPT_MPSTRAIN_TL | - |
BaiRuptureCriterion
Description
Bai and Wierzbicki rupture criterion [7]. The element is broken if the variable C, defined below, reaches a critical value: C=∫¯εp0d¯εp¯εpf(η,¯θ) where ¯εpf(η,¯θ) is defined as: ¯εpf(η,¯θ)=[12(D1e−D2η+D5e−D6η)−D3e−D4η]¯θ2+12(D1e−D2η−D5e−D6η)¯θ+D3e−D4η
Parameters
Name | Metafor Code | Dependency |
---|---|---|
D1 | RUPT_BAI_D1 | - |
D2 | RUPT_BAI_D2 | - |
D3 | RUPT_BAI_D3 | - |
D4 | RUPT_BAI_D4 | - |
D5 | RUPT_BAI_D5 | - |
D6 | RUPT_BAI_D6 | - |
ηcutoff | RUPT_BAI_CUTOFF | - |
LouRuptureCriterion
Description
Lou, Yoon and Huh rupture criterion [8]. The element is broken if the variable K, defined below, reaches a critical value: K=∫¯εp0d¯εp¯εpf(η,¯θ) where ¯εpf is defined as: ¯εpf=D3(2√L2+3)−D1(⟨11+C[η+3−L3√L2+3+C]⟩)−D2
with, L=3tan(θ)−√3tan(θ)+√3 where D1, D2 and D3 are material parameters. L corresponds to an alternative definition of the Lode angle and the ⟨∙⟩ symbol denotes the MacAuley brackets.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
D1 | RUPT_LOU_D1 | - |
D2 | RUPT_LOU_D2 | - |
D3 | RUPT_LOU_D3 | - |
C | RUPT_LOU_C | - |