Processing math: 100%

Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:rupturecritere



Failure criteria

RuptureCriterion

Description

RuptureCriterion manages various failure criteria.

The critical value C (RUPT_CRIT_VALUE) of a variable above which the element is broken.

The type of failure (RUPT_TYPE_CRIT) are defined in the table below :

Name Description
NOBREAK Compute the criterion, but never break any element
ONEBROKEN Break an element when ONE integration point override the critical value
ALLBROKEN Break an element when ALL the integration points override the critical value
MEANBROKEN Break an element when the averaged value over the integration points override the critical value

Parameters

Name Metafor Code Dependency
Critical value RUPT_CRIT_VALUE -
Type of failure RUPT_TYPE_CRIT -

IFRuptureCriterion

Description

The element is broken if an InternalField reaches a critical value. The critical InternalField is defined with the following command, which must be added when defining the criterion:

 rc.setInternalField(IF_EPL)

for a criterion based on a critical value of the equivalent plastic strain.

OneParameterRuptureCriterion

Description

Four simple rupture criteria are gathered in one single family. In order to selected one of the criteria the parameter RUPT_OP_LAW (only parameter in this criterion) need to be defined as: COCKROFT, BROZZO, AYADA or RICE. Then, the element is broken if the variable C reaches a critical value, which is defined in each case as:

Cockroft and Latham criterion (dimensional Value) : COCKROFT2 C=¯εp0σ1d¯εp Cockroft and Latham criterion (adimensional value) : COCKROFT C=¯εp0σ1¯σd¯εp Brozzo criterion : BROZZO C=¯εp02σ13(σ1p)d¯εp Ayada criterion : AYADA C=¯εp0p¯σd¯εp Rice and Tracey criterion : RICE C=¯εp0exp(32p¯σ)d¯εp

Parameters

Name Metafor Code Dependency
Criterion RUPT_OP_LAW -

BaoRuptureCriterion

Description

Bao-Wierzbicki criterion [1]. The element is broken if the variable C, defined below, reaches a critical value:

C=εpl0dεplεf

where εf is defined as:

εf={if pJ213P1(pJ2+13)P2if 13<pJ20P3(pJ2)2+P4pJ2+P5if 0<pJ2<0.4exp(P6pJ2)if pJ2>0.4

Parameters

Name Metafor Code Dependency
P1 RUPT_BAO_P1 -
P2 RUPT_BAO_P2 -
P3 RUPT_BAO_P3 -
P4 RUPT_BAO_P4 -
P5 RUPT_BAO_P5 -
P6 RUPT_BAO_P6 -

HancockMackenzieRuptureCriterion

Description

Hancock and Mackenzie criterion [2]. The critical plastic strain εf is defined as:

εf=D1+D2exp(D3pJ2)

Parameters

Name Metafor Code Dependency
D1 RUPT_HANCOCK_D1 -
D2 RUPT_HANCOCK_D2 -
D3 RUPT_HANCOCK_D3 -

JohnsonCookRuptureCriterion

Description

Johnson and Cook criterion [3]. The element is broken if the variable C, defined below, reaches a critical value: C=εpl0dεplεf

where εf is defined as:

εf=(D1+D2exp(D3pJ2))(1+D4ln˙εpl˙ε0)(1+D5TTroomTmeltTroom)

Parameters

Name Metafor Code Dependency
D1 RUPT_JC_D1 -
D2 RUPT_JC_D2 -
D3 RUPT_JC_D3 -
D4 RUPT_JC_D4 -
D5 RUPT_JC_D5 -
˙ε0 RUPT_JC_EPSP0 -
Room temperature Troom RUPT_JC_TROOM -
Melting temperature Tmelt RUPT_JC_TMELT -

LemaitreRuptureCriterion

Description

Lemaitre criterion [4]. The element is broken if the variable C, defined below, reaches a critical value:

C=εpl0(23(1+ν)+3(12ν)(pJ2)2)dεpl

Parameters

Name Metafor Code Dependency
ν RUPT_LEMAITRE_NU -

GoijaertsRuptureCriterion

Description

Goijaerts criterion [5]. The element is broken if W, whose evolution law is defined below, reaches 1.

˙W=1C1+ApJ2(εpl)B˙εpl

where brackets are MacCaulay brackets:

x=12(x+|x|)

Parameters

Name Metafor Code Dependency
A RUPT_GOIJAERTS_A -
B RUPT_GOIJAERTS_B -
C RUPT_GOIJAERTS_C -

MaximumPrincipalStrainRuptureCriterion

Description

Maximum Principal Strain criterion [6]. Element failure is detected differently whether the element is globally under tension of compression. It is broken if:

ϵI> RUPT_MPSTRAIN_TL if ϵI  + ϵII  + ϵIII  > 0

ϵIII> RUPT_MPSTRAIN_CL if ϵI  + ϵII  + ϵIII  < 0

where ϵI, ϵII and ϵIII are principal strains in decreasing order.

Parameters

Name Metafor Code Dependency
A RUPT_MPSTRAIN_CL -
B RUPT_MPSTRAIN_TL -

BaiRuptureCriterion

Description

Bai and Wierzbicki rupture criterion [7]. The element is broken if the variable C, defined below, reaches a critical value: C=¯εp0d¯εp¯εpf(η,¯θ) where ¯εpf(η,¯θ) is defined as: ¯εpf(η,¯θ)=[12(D1eD2η+D5eD6η)D3eD4η]¯θ2+12(D1eD2ηD5eD6η)¯θ+D3eD4η

Parameters

Name Metafor Code Dependency
D1 RUPT_BAI_D1 -
D2 RUPT_BAI_D2 -
D3 RUPT_BAI_D3 -
D4 RUPT_BAI_D4 -
D5 RUPT_BAI_D5 -
D6 RUPT_BAI_D6 -
ηcutoff RUPT_BAI_CUTOFF -

LouRuptureCriterion

Description

Lou, Yoon and Huh rupture criterion [8]. The element is broken if the variable K, defined below, reaches a critical value: K=¯εp0d¯εp¯εpf(η,¯θ) where ¯εpf is defined as: ¯εpf=D3(2L2+3)D1(11+C[η+3L3L2+3+C])D2

with, L=3tan(θ)3tan(θ)+3 where D1, D2 and D3 are material parameters. L corresponds to an alternative definition of the Lode angle and the symbol denotes the MacAuley brackets.

Parameters

Name Metafor Code Dependency
D1 RUPT_LOU_D1 -
D2 RUPT_LOU_D2 -
D3 RUPT_LOU_D3 -
C RUPT_LOU_C -

References

doc/user/elements/volumes/rupturecritere.txt · Last modified: 2022/07/14 14:32 by papeleux

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki