doc:user:elements:volumes:hyper_materials
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
doc:user:elements:volumes:hyper_materials [2024/04/12 14:51] – radermecker | doc:user:elements:volumes:hyper_materials [2025/05/20 15:50] (current) – C = Right Cauchy-Green tensor lacroix | ||
---|---|---|---|
Line 13: | Line 13: | ||
$$ | $$ | ||
+ | === Parameters === | ||
+ | ^ | ||
+ | | Density | ||
+ | | NeoHookean coefficient (C1) | ||
+ | | Initial bulk modulus (k0) | ||
+ | | Material temperature evolution law | '' | ||
+ | | Thermal expansion coefficient (α) | ||
+ | ===== TmNeoHookeanHyperMaterial ===== | ||
+ | <note important> | ||
+ | === Description === | ||
+ | Neo-Hookean hyperelastic law, using a '' | ||
+ | |||
+ | Here, the '' | ||
+ | |||
+ | === Parameters === | ||
+ | ^ | ||
+ | | Density | ||
+ | | NeoHookean coefficient (C1) | ||
+ | | Initial bulk modulus (k0) | ||
+ | | Thermal expansion coefficient (α) | ||
+ | | Conductivity | ||
+ | | Heat capacity | ||
+ | | Dissipated thermoelastic power fraction | ||
+ | | Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | ||
+ | ===== MooneyRivlinHyperMaterial ===== | ||
+ | |||
+ | === Description === | ||
+ | |||
+ | Mooney-Rivlin hyperelastic law, using a '' | ||
+ | |||
+ | (Quasi-)incompressibility is treated by a volumetric/ | ||
$$ | $$ | ||
- | U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right] | + | |
$$ | $$ | ||
+ | |||
+ | |||
+ | === Parameters === | ||
+ | ^ | ||
+ | | Density | ||
+ | | Mooney-Rivlin coefficient (C1) | ||
+ | | Mooney-Rivlin coefficient (C2) | ||
+ | | Initial bulk modulus (k0) | ||
+ | | Material temperature evolution law | '' | ||
+ | | Thermal expansion coefficient (α) | ||
+ | |||
+ | |||
+ | <WRAP center round important 60%> | ||
+ | **Version < 3554**\\ | ||
+ | This material has no analytical material tangent stiffness. The latter should be computed by pertubation (global or material). \\ | ||
+ | See '' | ||
+ | </ | ||
+ | |||
+ | ===== TmMooneyRivlinHyperMaterial ===== | ||
+ | <note important> | ||
+ | === Description === | ||
+ | |||
+ | Mooney-Rivlin hyperelastic law, using a '' | ||
+ | |||
+ | Here, the '' | ||
+ | |||
+ | === Parameters === | ||
+ | ^ | ||
+ | | Density | ||
+ | | Mooney-Rivlin coefficient (C1) | ||
+ | | Mooney-Rivlin coefficient (C2) | ||
+ | | Initial bulk modulus (k0) | ||
+ | | Thermal expansion coefficient (α) | ||
+ | | Conductivity | ||
+ | | Heat capacity | ||
+ | | Dissipated thermoelastic power fraction | ||
+ | | Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | ||
+ | |||
+ | ===== HolzapfelGasserOgdenHyperMaterial ===== | ||
+ | |||
+ | === Description === | ||
+ | Holzapfel-Gasser-Ogden (invariant-based) anisotropic hyperelastic law, using a '' | ||
+ | |||
+ | (Quasi-)incompressibility is treated by a volumetric/ | ||
+ | |||
+ | The strain-energy density function W is expressed as the sum of an **isotropic** (=**matrix**) and **anisotropic** (=**fibers**) contribution: | ||
+ | $$ | ||
+ | W\left(\bar{I}_1, | ||
+ | $$ | ||
+ | |||
+ | The **isotropic** contribution takes the form of a **generalized Neo-Hookean** model: | ||
+ | $$ | ||
+ | W_{iso}\left(\bar{I}_1, | ||
+ | $$ | ||
+ | |||
+ | The **anisotropic** contribution to the strain energy density function writes: | ||
+ | $$ | ||
+ | W_{ani}\left(\bar{I}_1, | ||
+ | $$ | ||
+ | where k1[MPa] and k2[-] are material parameters characterizing all fiber families in the material. d∈[0, 13] is a parameter accounting for **fiber dispersion**, | ||
+ | |||
+ | More information and mathematical derivations, | ||
=== Parameters === | === Parameters === | ||
- | ^ | + | ^ |
- | | Density | + | | Density |
- | | NeoHookean | + | | Mooney-Rivlin |
- | | Initial bulk modulus (k0) | + | | Initial bulk modulus (k0) |
+ | | HGO parameter k1 | ||
+ | | HGO parameter k2 | ||
+ | | Fiber dissipation d (optional, default=0) | ||
+ | | Direction of 1st fiber family a1 | ||
+ | | Direction of 2nd fiber family a2 | ||
+ | | Direction of 3rd fiber family a3 | ||
===== NeoHookeanHyperPk2Material ===== | ===== NeoHookeanHyperPk2Material ===== | ||
Line 37: | Line 136: | ||
$$ | $$ | ||
- | The deviatoric potential is computed based on a Cauchy tensor with a unit determinant: | + | The deviatoric potential is computed based on the right Cauchy–Green deformation |
$$ | $$ | ||
Line 45: | Line 144: | ||
=== Parameters === | === Parameters === | ||
- | ^ | + | ^ |
- | | Density | + | | Density |
- | | Initial bulk modulus (k0) | + | | Initial bulk modulus (k0) |
- | | Initial shear modulus (g0) | + | | Initial shear modulus (g0) |
+ | | Material temperature evolution law | '' | ||
+ | | Thermal expansion coefficient (α) | ||
===== LogarihtmicHyperPk2Material ===== | ===== LogarihtmicHyperPk2Material ===== | ||
Line 56: | Line 157: | ||
Logarithmic hyperelastic law, using a '' | Logarithmic hyperelastic law, using a '' | ||
- | The potential per unit volume is computed based on the average compressibility of the element, ($q$): | + | The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): |
$$ | $$ | ||
Line 70: | Line 171: | ||
=== Parameters === | === Parameters === | ||
- | ^ | + | ^ |
- | | Density | + | | Density |
- | | Initial bulk modulus (k0) | + | | Initial bulk modulus (k0) |
- | | Initial shear modulus (g0) | + | | Initial shear modulus (g0) |
+ | | Material temperature evolution law | '' | ||
+ | | Thermal expansion coefficient (α) | ||
===== EvpIsoHLogarithmicHyperPk2Material ===== | ===== EvpIsoHLogarithmicHyperPk2Material ===== | ||
Line 95: | Line 199: | ||
^ | ^ | ||
- | | Density | + | | Density |
- | | Initial bulk modulus (k0) | + | | Initial bulk modulus (k0) |
- | | Initial shear modulus (g0) | + | | Initial shear modulus (g0) |
| Number of the material law which defines the yield stress σyield | '' | | Number of the material law which defines the yield stress σyield | '' | ||
+ | | Material temperature evolution law | '' | ||
+ | | Thermal expansion coefficient (α) | ||
===== FunctionBasedHyperPk2Material ===== | ===== FunctionBasedHyperPk2Material ===== | ||
Line 117: | Line 223: | ||
^ | ^ | ||
- | | Density | + | | Density |
- | | Initial bulk modulus (k0) | + | | Initial bulk modulus (k0) |
- | | Number of the hyperelastic law | '' | + | | Number of the hyperelastic law | '' |
+ | | Material temperature evolution law | '' | ||
+ | | Thermal expansion coefficient (α) | ||
Line 162: | Line 270: | ||
^ | ^ | ||
- | | Density | + | | Density |
- | | Initial bulk modulus (k0) | + | | Initial bulk modulus (k0) |
| Number of the main viscoelastic law | '' | | Number of the main viscoelastic law | '' | ||
| Number of the first Maxwell viscoelastic law | '' | | Number of the first Maxwell viscoelastic law | '' | ||
| Number of the second Maxwell viscoelastic law (optional) | | Number of the second Maxwell viscoelastic law (optional) | ||
| Number of the third Maxwell viscoelastic law (optional) | | Number of the third Maxwell viscoelastic law (optional) | ||
+ | | Material temperature evolution law | '' | ||
+ | | Thermal expansion coefficient (α) | ||
doc/user/elements/volumes/hyper_materials.1712926301.txt.gz · Last modified: by radermecker