doc:user:integration:scheme:dynexpl
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| doc:user:integration:scheme:dynexpl [2014/01/31 09:16] – boman | doc:user:integration:scheme:dynexpl [2022/12/21 11:35] (current) – [New Metafor Version > 2422] boman | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | ====== | + | ====== |
| ===== Description ===== | ===== Description ===== | ||
| - | Il s'agit d' | + | The equilibrium equation between internal |
| $$Ma+F^{int}=F^{ext}$$ | $$Ma+F^{int}=F^{ext}$$ | ||
| - | ==== Le schéma de la différence centrée | + | ==== Central difference method |
| - | Les relations entre les déplacements | + | Relations between displacements |
| $$v(t^{n+1/ | $$v(t^{n+1/ | ||
| $$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^{n+1/ | $$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^{n+1/ | ||
| - | L' | + | The equilibrium equation becomes |
| $$a(t^{n+1}) = (F^{ext}(t^{n+1}) - F^{int}(t^{n+1}))/ | $$a(t^{n+1}) = (F^{ext}(t^{n+1}) - F^{int}(t^{n+1}))/ | ||
| - | Ce schéma est conditionnellement | + | This scheme is conditionally |
| - | ==== Le schéma alpha-généralisé | + | ==== Alpha-generalized scheme |
| - | Il s'agit des mêmes | + | Same relations |
| $$(1-\alpha_M) a(t^{n+1}) + \alpha_M a(t^n) = \frac{F^{ext}(t^n) - F^{int}(t^n)}{M}$$ | $$(1-\alpha_M) a(t^{n+1}) + \alpha_M a(t^n) = \frac{F^{ext}(t^n) - F^{int}(t^n)}{M}$$ | ||
| - | Les relations entre les déplacements | + | Relations between displacements |
| $$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^n) + (t^{n+1}-t^n)^2 \left( (0.5-\beta)a(t^n) + \beta a(t^{n+1})\right) $$ | $$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^n) + (t^{n+1}-t^n)^2 \left( (0.5-\beta)a(t^n) + \beta a(t^{n+1})\right) $$ | ||
| $$v(t^{n+1}) = v(t^n) + (t^{n+1}-t^n) {(1-\gamma)a(t^n) + \gamma a(t^{n+1})} $$ | $$v(t^{n+1}) = v(t^n) + (t^{n+1}-t^n) {(1-\gamma)a(t^n) + \gamma a(t^{n+1})} $$ | ||
| - | Les valeurs particulières des paramètres de pondération qui conduisent à une dissipation | + | Specific values leading to an optimal numerical |
| $$\alpha_M = (2\rho_\beta-1)/ | $$\alpha_M = (2\rho_\beta-1)/ | ||
| Line 38: | Line 38: | ||
| $$\beta = \frac{5-3\rho_\beta}{(1+\rho_\beta)^2 (2-\rho_\beta)}$$ | $$\beta = \frac{5-3\rho_\beta}{(1+\rho_\beta)^2 (2-\rho_\beta)}$$ | ||
| - | Ce schéma est conditionnellement | + | Conditionally |
| - | ==== Le schema Tchamwa ==== | + | |
| - | Algorithme explicite avec dissipation numérique controlée par le paramètre $\phi$. | + | ==== Tchamwa Scheme ==== |
| - | L' | + | |
| + | |||
| + | Explicit algorithm where numerical dissipation is monitored by the parameter $\phi$. | ||
| + | |||
| + | Equilibrium computed with | ||
| $$a(t^{n+1}) = \frac{F^{ext}(t^{n+1}) - F^{int}(t^{n+1})}{M}$$ | $$a(t^{n+1}) = \frac{F^{ext}(t^{n+1}) - F^{int}(t^{n+1})}{M}$$ | ||
| - | Les relations entre les déplacements | + | Relations between displacements $x$, velocities $v$ and accelerations $a$ are: |
| $$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^n) + \phi (t^{n+1}-t^n)^2 a(t^n) $$\\ | $$x(t^{n+1}) = x(t^n) + (t^{n+1}-t^n) v(t^n) + \phi (t^{n+1}-t^n)^2 a(t^n) $$\\ | ||
| $$v(t^{n+1}) = v(t^n) + (t^{n+1}-t^n) a(t^n) $$ | $$v(t^{n+1}) = v(t^n) + (t^{n+1}-t^n) a(t^n) $$ | ||
| - | La stabilité est assurée pour $\phi \geq 1 $ et les hautes fréquences sont annihilées en un pas de temps pour $\phi = 2$. Le schema est d' | + | Stability guaranteed for |
| - | * 2 pour $\phi = 1$ (pas de dissipation | + | * second order for $\phi = 1$ (no numerical |
| - | * 1 pour $\phi > 1$ (dissipation | + | * first order for $\phi > 1$ (numerical |
| + | |||
| + | Relation between $\phi$ and spectral radius for the bifurcation $\rho_\beta$ (user parameter '' | ||
| + | * $$\phi = \frac{2(1- \rho_\beta^{1/ | ||
| + | * $$\phi = 1 \mbox{ if } \rho_\beta = 1 $$ | ||
| + | |||
| + | ===== Input file ===== | ||
| + | |||
| + | See [[dynimpl|dynamic implicit]] scheme for definition of density and initial velocities. | ||
| + | |||
| + | ==== Old Metafor Version <= 2422 ==== | ||
| + | |||
| + | === Choosing the algorithm === | ||
| + | |||
| + | ^ | ||
| + | | Certered difference | ||
| + | | Chung Hulbert | ||
| + | | Tchamwa | ||
| + | |||
| + | (see [[doc: | ||
| + | |||
| + | ==== New Metafor Version > 2422 ==== | ||
| + | |||
| + | === Centered Difference === | ||
| + | |||
| + | < | ||
| + | ti = CentralDifferenceTimeIntegration(metafor) | ||
| + | metafor.setTimeIntegration(ti) | ||
| + | </ | ||
| - | La relation entre $\phi$ et le rayon spectral à la bifurcation $\rho_\beta$ (paramètre utilisateur '' | + | === Chung Hulbert === |
| - | * $$\phi | + | |
| - | * $$\phi | + | |
| - | ===== Jeu de données ===== | + | < |
| + | ti = ChExplicitTimeIntegration(metafor) | ||
| + | ti.setRhoB(_rhoB) | ||
| + | metafor.setTimeIntegration(ti) | ||
| + | </ | ||
| - | Voir schéma | + | The parameter '' |
| - | ==== Choisir l' | + | === Tchamwa |
| - | ^ | + | < |
| - | | Chung Hulbert | + | ti = TchamwaExplicitTimeIntegration(metafor) |
| - | | Différence centrée | + | ti.setRhoB(_rhoB) |
| - | | Tchamwa | + | metafor.setTimeIntegration(ti) |
| + | </ | ||
| - | (voir [[doc: | + | The parameter '' |
| - | Paramètres supplémentaires: voir [[quasistatique]] | + | Other parameters |
doc/user/integration/scheme/dynexpl.1391156185.txt.gz · Last modified: (external edit)
