doc:user:elements:volumes:yield_stress
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
doc:user:elements:volumes:yield_stress [2014/07/07 13:45] – canales | doc:user:elements:volumes:yield_stress [2025/03/11 16:56] (current) – [SellarsTeggartYieldStress] papeleux | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Yield Stress ====== | ====== Yield Stress ====== | ||
- | La classe | + | The class '' |
- | Qu' | + | |
$$ | $$ | ||
Line 8: | Line 8: | ||
$$ | $$ | ||
- | Lois implémentées dans Metafor. | + | The laws implemented in Metafor |
===== IsotropicHardening ===== | ===== IsotropicHardening ===== | ||
- | Afin de simplifier 80% les tests, les classes | + | In order to simplify most of the test cases, the '' |
$$ | $$ | ||
\sigma_{yield} | \sigma_{yield} | ||
$$ | $$ | ||
- | + | Consequently, | |
- | L' | + | |
===== GsIsoHYieldStress ===== | ===== GsIsoHYieldStress ===== | ||
- | Contrainte limite définie par un écrouissage isotrope | + | Yield Stress defined by an isotropic hardening: |
$$ | $$ | ||
\sigma_{yield} | \sigma_{yield} | ||
$$ | $$ | ||
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ |
- | |Numéro de la loi d' | + | |Number of the isotropic hardening law | '' |
- | |Numéro de la loi d' | + | |Number of the grain size evolution law |
===== PerzynaYieldStress ===== | ===== PerzynaYieldStress ===== | ||
- | Contrainte limite définie par un écrouissage isotrope additionné d'une contrainte | + | Yield Stress defined by an isotropic hardening and a visco-plastic |
$$ | $$ | ||
\sigma_{yield} | \sigma_{yield} | ||
$$ | $$ | ||
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ |
- | |Numéro de la loi d' | + | |Number of the isotropic hardening law |
|K | |K | ||
|M | |M | ||
Line 53: | Line 54: | ||
===== GsPerzynaYieldStress ===== | ===== GsPerzynaYieldStress ===== | ||
- | Contrainte limite définie par un écrouissage isotrope additionné d'une contrainte | + | Yield Stress defined by an isotropic hardening, a visco-plastic |
$$ | $$ | ||
\sigma_{yield} | \sigma_{yield} | ||
$$ | $$ | ||
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ |
- | |Numéro de la loi d' | + | |Number of the isotropic hardening law |
- | |Numéro de la loi d' | + | |Number of the grain size evolution law | '' |
|K | |K | ||
|M | |M | ||
Line 71: | Line 73: | ||
===== JohnsonCookYieldStress ===== | ===== JohnsonCookYieldStress ===== | ||
- | Loi visco-plastique de Johnson-Cook : | + | Johnson-Cook |
+ | \begin{multline} | ||
+ | \sigma_{yield}= \left( A+B \left( \bar{\varepsilon}^{vp} \right)^n \right) | ||
+ | \left(1+C\ln\left(\dfrac{\dot{\bar{\varepsilon}}^{vp}}{\dot{\varepsilon}_0}\right)+C_2\left(\ln\left(\dfrac{\dot{\bar{\varepsilon}}^{vp}}{\dot{\varepsilon}_0}\right)\right)^2\right) | ||
+ | \left( 1- \left( \dfrac{T-T_{room}}{T_{melt}-T_{room}} \right)^m \right) | ||
+ | \end{multline} | ||
- | $$\sigma_{yield}= \left( A+B \left( \bar{\varepsilon}^{vp} \right)^n \right) | ||
- | \left(1+C\ln\left(\dfrac{\dot{\bar{\varepsilon}}^{vp}}{\dot{\varepsilon}_0}\right)+C_2\left(\ln\left(\dfrac{\dot{\bar{\varepsilon}}^{vp}}{\dot{\varepsilon}_0}\right)\right)^2\right) | ||
- | $$ | ||
+ | === Parameters === | ||
- | === Paramètres === | + | ^ |
- | + | ||
- | ^ | + | |
|A | |A | ||
|B | |B | ||
|n | |n | ||
|m | |m | ||
- | |Température de référence | + | |Room temperature |
- | |Température de fusion | + | |Melting temperature |
|C | |C | ||
|C2 | |C2 | ||
Line 94: | Line 97: | ||
===== JohnsonCookMecYieldStress ===== | ===== JohnsonCookMecYieldStress ===== | ||
- | Version " | + | Isotherm version of the Johnson-Cook |
$$ | $$ | ||
Line 102: | Line 105: | ||
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ |
|A | |A | ||
|B | |B | ||
Line 114: | Line 117: | ||
===== PowJohnsonCookYieldStress ===== | ===== PowJohnsonCookYieldStress ===== | ||
- | Variante en puissance à la loi visco-plastique de Johnson-Cook (implémentation | + | Power version of the Johnson-Cook |
$$ | $$ | ||
Line 121: | Line 124: | ||
$$ | $$ | ||
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ |
|A | |A | ||
|B | |B | ||
|n | |n | ||
|m | |m | ||
- | |Température de référence | + | |Room temperature |
- | |Température de fusion | + | |Melting temperature |
|C | |C | ||
|˙ε0 | |˙ε0 | ||
Line 135: | Line 138: | ||
===== ZerilliArmstrongYieldStress ===== | ===== ZerilliArmstrongYieldStress ===== | ||
- | Loi visco-plastique de Zerilli-Armstong: | + | Zerilli-Armstong |
$$ | $$ | ||
Line 141: | Line 144: | ||
$$ | $$ | ||
- | Dans le cas de métaux | + | For FCC metals, C5=0. |
- | Dans le cas de métaux | + | For BCC metals, n2=0. |
- | :!: Attention | + | :!: Careful: this law is thermomechanical, |
- | === Paramètres | + | === Parameters |
- | ^ Nom ^ | + | ^ |
|σ0 | |σ0 | ||
|C5 | |C5 | ||
Line 160: | Line 163: | ||
===== CowperSymondsYieldStress ===== | ===== CowperSymondsYieldStress ===== | ||
- | Loi visco-plastique de Cowper-Symonds. | + | Cowper-Symonds |
$$ | $$ | ||
- | \sigma_{yield}= \sigma_0 \left( 1 + \dfrac{\dot{\overline{\varepsilon}}^{vp}}{D} \right)^{\frac{1}{p}} | + | \sigma_{yield}= \sigma_0 \left( 1 + \left(\dfrac{\dot{\overline{\varepsilon}}^{vp}}{D}\right)^{\frac{1}{p}} |
$$ | $$ | ||
- | où σ0 | + | where σ0 |
- | === Paramètres === | ||
- | ^ Nom ^ | + | === Parameters === |
- | |Numéro de la loi d' | + | |
+ | ^ | ||
+ | |Number of the hardening law | ||
|D | '' | |D | '' | ||
|p | '' | |p | '' | ||
Line 180: | Line 184: | ||
=== Description === | === Description === | ||
- | Extension visco-plastique de la loi d' | + | Visco-plastic extension of the " |
$$ | $$ | ||
Line 191: | Line 195: | ||
$$ | $$ | ||
- | avec la contrainte limite de transition | + | where σtry is a transition |
$$ | $$ | ||
Line 197: | Line 201: | ||
$$ | $$ | ||
- | et la défo plastique de transition correspondante | + | and where ˉεvptr is the corresponding plastic strain: |
$$ | $$ | ||
Line 203: | Line 207: | ||
$$ | $$ | ||
- | + | The viscous component of the yield stress is hidden in the calculation of the saturation | |
- | La composante visqueuse de la contrainte limite se trouve cachée dans le calcul de la contrainte de saturation | + | |
$$ | $$ | ||
Line 210: | Line 213: | ||
$$ | $$ | ||
- | k : constante de Boltzman = 1.381e−23J/K | + | k : Boltzman's constant |
- | T : Température | + | T : Temperature |
- | A : Energie d' | + | A : Activation energy |
- | ˙ˉεvp0 : référence | + | ˙ˉεvp0 : reference |
- | === Paramètres | + | === Parameters |
- | ^ Nom ^ | + | ^ Name ^ Metafor |
|σ0 | |σ0 | ||
|Θ0 | |Θ0 | ||
Line 226: | Line 229: | ||
|σv0 | '' | |σv0 | '' | ||
|˙ˉεvp0 | '' | |˙ˉεvp0 | '' | ||
- | |k : Constante de Boltzman | '' | + | |k : Boltzman's constant |
|A | |A | ||
Line 234: | Line 237: | ||
=== Description === | === Description === | ||
- | Extension | + | Second |
- | Version 2 pour une meilleur concordance avec le Ta6V | + | |
- | Pas de stade 4 | + | |
- | L' | + | No fourth step |
+ | |||
+ | The basic equation is still: | ||
$$ | $$ | ||
\sigma_{y} = \sigma_{y}^{0} + \sigma_{v} \left [1-exp \left (-\frac{\Theta_{0}}{\sigma_{v}} \bar{\varepsilon}^{vp}\right ) \right ] | \sigma_{y} = \sigma_{y}^{0} + \sigma_{v} \left [1-exp \left (-\frac{\Theta_{0}}{\sigma_{v}} \bar{\varepsilon}^{vp}\right ) \right ] | ||
$$ | $$ | ||
- | La dépendance à la vitesse de déformation plastique et la température se trouve cachée dans le calcul de la contrainte de Voce σv. | + | Both plastic strain rate and temperature dependency are hidden in the calculation of the Voce stress |
g=kTμb3ln(˙ˉεvp0˙ˉεvp) | g=kTμb3ln(˙ˉεvp0˙ˉεvp) | ||
- | b : étant la norme du vecteur de Burgers \\ | + | where |
- | k : étant la constante de Boltzmann | + | |
- | (pour le Ta6V kb3 1.135 en unité | + | b : is the norm of the Burgers |
- | T : Température | + | k : is the Boltzmann's constant |
- | μ : Module de cisaillement élastique du matériau | + | (for Ta6V, kb3 1.135, in " |
- | ˙ˉεvp0: | + | T : Temperature |
+ | μ : Elastic shear modulus of the material | ||
+ | ˙ˉεvp0: | ||
- | On obtient la figure | + | the following |
{{ : | {{ : | ||
- | Normalement | + | KocksMecking |
- | Soit | + | G12 and G23 are defined as the transition |
- | g12 et g23 : valeur de g transition | + | |
$$ | $$ | ||
Line 269: | Line 273: | ||
$$ | $$ | ||
- | Enfin On a aussi observé que l' | + | Finally, the apparition of plasticity was observed to depend on strain rate and temperature |
- | (ici, la dépendance de la température est définie explicitement, mais elle pourrait aussi être définie implicitement) | + | |
σ0=A+BT+(C+DT)ln(˙ˉεvp) | σ0=A+BT+(C+DT)ln(˙ˉεvp) | ||
- | === Paramètres | + | === Parameters |
- | ^ Nom ^ | + | ^ |
|A | |A | ||
|B | |B | ||
Line 292: | Line 294: | ||
|B3 | '' | |B3 | '' | ||
|kb3 | '' | |kb3 | '' | ||
- | |Module de Young | '' | + | |Young's Modulus |
- | |Coefficient de Poisson | + | |Poisson |
|Θ0 | |Θ0 | ||
|˙ˉεvp0 | '' | |˙ˉεvp0 | '' | ||
+ | |||
+ | |||
+ | ===== SellarsTegartYieldStress ===== | ||
+ | |||
+ | Yield Stress used for hot rolling defined by : | ||
+ | * a viscous power term : | ||
+ | $$ | ||
+ | S0 = \sqrt{3} | ||
+ | $$ | ||
+ | * a viscous asinh Term : | ||
+ | $$ | ||
+ | Ss = As \; asinh((\frac{\dot{\bar{\varepsilon}}^{vp}}{Zs})^{Ms}) | ||
+ | $$ | ||
+ | * for the Yield Stress computed by (using a Voce hardening term): | ||
+ | $$ | ||
+ | \sigma_{yield} | ||
+ | $$ | ||
+ | |||
+ | === Parameters === | ||
+ | |||
+ | ^ Name | ||
+ | |KK | ||
+ | |M0 | ||
+ | |As | ||
+ | |Zs | ||
+ | |Ms | ||
+ | |C | '' | ||
+ | |R | '' | ||
+ | |||
+ | |||
+ | ===== PythonYieldStress ===== | ||
+ | |||
+ | User defined Yield Stress by a pythonDirector : | ||
+ | Python Director allows user to define their own Yield Stress law. Four functions has to be defined in the Python Class : a constructor (__init__), a destructor (__del__) that must never be called, and the computation functions : getYieldStress (returning YieldStress) and getYieldHardening (returning h). | ||
+ | See the example below of a Perzyna law : | ||
+ | < | ||
+ | |||
+ | class MyYieldStress(PythonYieldStress): | ||
+ | def __init__(self, | ||
+ | print(" | ||
+ | PythonYieldStress.__init__(self, | ||
+ | self.svm0 = _svm0 | ||
+ | self.h | ||
+ | self.K | ||
+ | self.m | ||
+ | def __del__(self): | ||
+ | print(" | ||
+ | print(" | ||
+ | input('' | ||
+ | exit(1) | ||
+ | def getYieldStress(self, | ||
+ | #print " | ||
+ | if dTime > 0.0: | ||
+ | dEvpl = deltaEvpl/ | ||
+ | else: | ||
+ | dEvpl = 0.0 | ||
+ | sigH = self.svm0+evpl*self.h | ||
+ | sigV = self.K*pow(dEvpl, | ||
+ | # | ||
+ | return sigH+sigV | ||
+ | def getYieldHardening(self, | ||
+ | if dTime > 0.0: | ||
+ | dEvpl = deltaEvpl/ | ||
+ | h = self.h + (self.K*pow(dEvpl, | ||
+ | else: | ||
+ | dEvpl = 0.0 | ||
+ | h = self.h | ||
+ | return h | ||
+ | </ | ||
doc/user/elements/volumes/yield_stress.1404733559.txt.gz · Last modified: (external edit)