doc:user:elements:volumes:yield_stress
Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
doc:user:elements:volumes:yield_stress [2013/07/11 14:43] – created joris | doc:user:elements:volumes:yield_stress [2025/03/11 16:56] (current) – [SellarsTeggartYieldStress] papeleux | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Yield Stress ====== | ====== Yield Stress ====== | ||
- | La classe | + | The class '' |
- | Qu' | + | |
$$ | $$ | ||
Line 8: | Line 8: | ||
$$ | $$ | ||
- | Lois implémentées dans Metafor. | + | The laws implemented in Metafor |
===== IsotropicHardening ===== | ===== IsotropicHardening ===== | ||
- | Afin de simplifier 80% les tests, les classes | + | In order to simplify most of the test cases, the '' |
$$ | $$ | ||
\sigma_{yield} | \sigma_{yield} | ||
$$ | $$ | ||
- | + | Consequently, | |
- | L' | + | |
===== GsIsoHYieldStress ===== | ===== GsIsoHYieldStress ===== | ||
- | Contrainte limite définie par un écrouissage isotrope | + | Yield Stress defined by an isotropic hardening: |
$$ | $$ | ||
\sigma_{yield} | \sigma_{yield} | ||
$$ | $$ | ||
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ |
- | |Numéro de la loi d' | + | |Number of the isotropic hardening law | '' |
- | |Numéro de la loi d' | + | |Number of the grain size evolution law |
===== PerzynaYieldStress ===== | ===== PerzynaYieldStress ===== | ||
- | Contrainte limite définie par un écrouissage isotrope additionné d'une contrainte | + | Yield Stress defined by an isotropic hardening and a visco-plastic |
$$ | $$ | ||
\sigma_{yield} | \sigma_{yield} | ||
$$ | $$ | ||
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ |
- | |Numéro de la loi d' | + | |Number of the isotropic hardening law |
|$K $ | |$K $ | ||
|$M $ | |$M $ | ||
Line 53: | Line 54: | ||
===== GsPerzynaYieldStress ===== | ===== GsPerzynaYieldStress ===== | ||
- | Contrainte limite définie par un écrouissage isotrope additionné d'une contrainte | + | Yield Stress defined by an isotropic hardening, a visco-plastic |
$$ | $$ | ||
\sigma_{yield} | \sigma_{yield} | ||
$$ | $$ | ||
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ |
- | |Numéro de la loi d' | + | |Number of the isotropic hardening law |
- | |Numéro de la loi d' | + | |Number of the grain size evolution law | '' |
|$K $ | |$K $ | ||
|$M $ | |$M $ | ||
Line 71: | Line 73: | ||
===== JohnsonCookYieldStress ===== | ===== JohnsonCookYieldStress ===== | ||
- | Loi visco-plastique de Johnson-Cook : | + | Johnson-Cook |
+ | \begin{multline} | ||
+ | \sigma_{yield}= \left( A+B \left( \bar{\varepsilon}^{vp} \right)^n \right) | ||
+ | \left(1+C\ln\left(\dfrac{\dot{\bar{\varepsilon}}^{vp}}{\dot{\varepsilon}_0}\right)+C_2\left(\ln\left(\dfrac{\dot{\bar{\varepsilon}}^{vp}}{\dot{\varepsilon}_0}\right)\right)^2\right) | ||
+ | \left( 1- \left( \dfrac{T-T_{room}}{T_{melt}-T_{room}} \right)^m \right) | ||
+ | \end{multline} | ||
- | $$\sigma_{yield}= \left( A+B \left( \bar{\varepsilon}^{vp} \right)^n \right) | ||
- | \left(1+C\ln\left(\dfrac{\dot{\bar{\varepsilon}}^{vp}}{\dot{\varepsilon}_0}\right)+C_2\left(\ln\left(\dfrac{\dot{\bar{\varepsilon}}^{vp}}{\dot{\varepsilon}_0}\right)\right)^2\right) | ||
- | $$ | ||
+ | === Parameters === | ||
- | === Paramètres === | + | ^ |
- | + | ||
- | ^ | + | |
|$A $ | |$A $ | ||
|$B $ | |$B $ | ||
|$n $ | |$n $ | ||
|$m $ | |$m $ | ||
- | |Température de référence | + | |Room temperature |
- | |Température de fusion | + | |Melting temperature |
|$C $ | |$C $ | ||
|$C_2 $ | |$C_2 $ | ||
Line 94: | Line 97: | ||
===== JohnsonCookMecYieldStress ===== | ===== JohnsonCookMecYieldStress ===== | ||
- | Version " | + | Isotherm version of the Johnson-Cook |
$$ | $$ | ||
Line 102: | Line 105: | ||
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ |
|$A $ | |$A $ | ||
|$B $ | |$B $ | ||
Line 114: | Line 117: | ||
===== PowJohnsonCookYieldStress ===== | ===== PowJohnsonCookYieldStress ===== | ||
- | Variante en puissance à la loi visco-plastique de Johnson-Cook (implémentation | + | Power version of the Johnson-Cook |
$$ | $$ | ||
Line 121: | Line 124: | ||
$$ | $$ | ||
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ |
|$A $ | |$A $ | ||
|$B $ | |$B $ | ||
|$n $ | |$n $ | ||
|$m $ | |$m $ | ||
- | |Température de référence | + | |Room temperature |
- | |Température de fusion | + | |Melting temperature |
|$C $ | |$C $ | ||
|$\dot{\varepsilon}_0$ | |$\dot{\varepsilon}_0$ | ||
Line 135: | Line 138: | ||
===== ZerilliArmstrongYieldStress ===== | ===== ZerilliArmstrongYieldStress ===== | ||
- | Loi visco-plastique de Zerilli-Armstong: | + | Zerilli-Armstong |
$$ | $$ | ||
Line 141: | Line 144: | ||
$$ | $$ | ||
- | Dans le cas de métaux | + | For FCC metals, $C_5=0$. |
- | Dans le cas de métaux | + | For BCC metals, $n_2=0$. |
- | :!: Attention | + | :!: Careful: this law is thermomechanical, |
- | === Paramètres | + | === Parameters |
- | ^ Nom ^ | + | ^ |
|$\sigma_0$ | |$\sigma_0$ | ||
|$C_5$ | |$C_5$ | ||
Line 160: | Line 163: | ||
===== CowperSymondsYieldStress ===== | ===== CowperSymondsYieldStress ===== | ||
- | Loi visco-plastique de Cowper-Symonds. | + | Cowper-Symonds |
$$ | $$ | ||
- | \sigma_{yield}= \sigma_0 \left( 1 + \dfrac{\dot{\overline{\varepsilon}}^{vp}}{D} \right)^{\frac{1}{p}} | + | \sigma_{yield}= \sigma_0 \left( 1 + \left(\dfrac{\dot{\overline{\varepsilon}}^{vp}}{D}\right)^{\frac{1}{p}} |
$$ | $$ | ||
- | où $\sigma_0$ | + | where $\sigma_0$ |
- | === Paramètres === | ||
- | ^ Nom ^ | + | === Parameters === |
- | |Numéro de la loi d' | + | |
+ | ^ | ||
+ | |Number of the hardening law | ||
|$D $ | '' | |$D $ | '' | ||
|$p $ | '' | |$p $ | '' | ||
Line 180: | Line 184: | ||
=== Description === | === Description === | ||
- | Extension visco-plastique de la loi d' | + | Visco-plastic extension of the " |
$$ | $$ | ||
Line 191: | Line 195: | ||
$$ | $$ | ||
- | avec la contrainte limite de transition | + | where $\sigma_{y}^{tr} $ is a transition |
$$ | $$ | ||
Line 197: | Line 201: | ||
$$ | $$ | ||
- | et la défo plastique de transition correspondante | + | and where $\bar{\varepsilon}^{vp}_{tr}$ is the corresponding plastic strain: |
$$ | $$ | ||
Line 203: | Line 207: | ||
$$ | $$ | ||
- | + | The viscous component of the yield stress is hidden in the calculation of the saturation | |
- | La composante visqueuse de la contrainte limite se trouve cachée dans le calcul de la contrainte de saturation | + | |
$$ | $$ | ||
Line 210: | Line 213: | ||
$$ | $$ | ||
- | $k$ : constante de Boltzman = $1.381e-23 \mbox{J}/ | + | $k$ : Boltzman's constant |
- | $T$ : Température | + | $T$ : Temperature |
- | $A$ : Energie d' | + | $A$ : Activation energy |
- | ${\dot{\bar{\varepsilon}}^{vp}_{0}}$ : référence | + | ${\dot{\bar{\varepsilon}}^{vp}_{0}}$ : reference |
- | === Paramètres | + | === Parameters |
- | ^ Nom ^ | + | ^ Name ^ Metafor |
|$\sigma_0$ | |$\sigma_0$ | ||
|$\Theta_{0}$ | |$\Theta_{0}$ | ||
Line 226: | Line 229: | ||
|$\sigma_{v0}$ | '' | |$\sigma_{v0}$ | '' | ||
|${\dot{\bar{\varepsilon}}^{vp}_{0}}$ | '' | |${\dot{\bar{\varepsilon}}^{vp}_{0}}$ | '' | ||
- | |$k$ : Constante de Boltzman | '' | + | |$k$ : Boltzman's constant |
|$A$ | |$A$ | ||
Line 234: | Line 237: | ||
=== Description === | === Description === | ||
- | Extension | + | Second |
- | Version 2 pour une meilleur concordance avec le Ta6V | + | |
- | Pas de stade 4 | + | |
- | L' | + | No fourth step |
+ | |||
+ | The basic equation is still: | ||
$$ | $$ | ||
\sigma_{y} = \sigma_{y}^{0} + \sigma_{v} \left [1-exp \left (-\frac{\Theta_{0}}{\sigma_{v}} \bar{\varepsilon}^{vp}\right ) \right ] | \sigma_{y} = \sigma_{y}^{0} + \sigma_{v} \left [1-exp \left (-\frac{\Theta_{0}}{\sigma_{v}} \bar{\varepsilon}^{vp}\right ) \right ] | ||
$$ | $$ | ||
- | La dépendance à la vitesse de déformation plastique et la température se trouve cachée dans le calcul de la contrainte de Voce $\sigma_{v}$. | + | Both plastic strain rate and temperature dependency are hidden in the calculation of the Voce stress |
$$ g = \frac{kT}{\mu b^3} \ln \left ( \frac{\dot{\bar{\varepsilon}}^{vp}_{0}}{\dot{\bar{\varepsilon}}^{vp}} \right ) $$ | $$ g = \frac{kT}{\mu b^3} \ln \left ( \frac{\dot{\bar{\varepsilon}}^{vp}_{0}}{\dot{\bar{\varepsilon}}^{vp}} \right ) $$ | ||
- | $b$ : étant la norme du vecteur de Burgers \\ | + | where |
- | $k$ : étant la constante de Boltzmann | + | |
- | (pour le Ta6V $ \frac{k}{b^3} ~ 1.135 $ en unité | + | $b$ : is the norm of the Burgers |
- | $T$ : Température | + | $k$ : is the Boltzmann's constant |
- | $\mu$ : Module de cisaillement élastique du matériau | + | (for Ta6V, $ \frac{k}{b^3} ~ 1.135 $, in " |
- | $\dot{\bar{\varepsilon}}^{vp}_{0}$: | + | $T$ : Temperature |
+ | $\mu$ : Elastic shear modulus of the material | ||
+ | $\dot{\bar{\varepsilon}}^{vp}_{0}$: | ||
- | On obtient la figure | + | the following |
{{ : | {{ : | ||
- | Normalement | + | KocksMecking |
- | Soit | + | $G12$ and $G23$ are defined as the transition |
- | g12 et g23 : valeur de g transition | + | |
$$ | $$ | ||
Line 269: | Line 273: | ||
$$ | $$ | ||
- | Enfin On a aussi observé que l' | + | Finally, the apparition of plasticity was observed to depend on strain rate and temperature |
- | (ici, la dépendance de la température est définie explicitement, mais elle pourrait aussi être définie implicitement) | + | |
$$\sigma_0 = A + B T + (C + D T) \ln \left (\dot{\bar{\varepsilon}}^{vp}\right ) $$ | $$\sigma_0 = A + B T + (C + D T) \ln \left (\dot{\bar{\varepsilon}}^{vp}\right ) $$ | ||
- | === Paramètres | + | === Parameters |
- | ^ Nom ^ | + | ^ |
|$ A $ | |$ A $ | ||
|$ B $ | |$ B $ | ||
Line 292: | Line 294: | ||
|$ B3 $ | '' | |$ B3 $ | '' | ||
|$\frac{k}{b^3}$ | '' | |$\frac{k}{b^3}$ | '' | ||
- | |Module de Young | '' | + | |Young's Modulus |
- | |Coefficient de Poisson | + | |Poisson |
|$\Theta_{0}$ | |$\Theta_{0}$ | ||
|${\dot{\bar{\varepsilon}}^{vp}_{0}}$ | '' | |${\dot{\bar{\varepsilon}}^{vp}_{0}}$ | '' | ||
+ | |||
+ | |||
+ | ===== SellarsTegartYieldStress ===== | ||
+ | |||
+ | Yield Stress used for hot rolling defined by : | ||
+ | * a viscous power term : | ||
+ | $$ | ||
+ | S0 = \sqrt{3} | ||
+ | $$ | ||
+ | * a viscous asinh Term : | ||
+ | $$ | ||
+ | Ss = As \; asinh((\frac{\dot{\bar{\varepsilon}}^{vp}}{Zs})^{Ms}) | ||
+ | $$ | ||
+ | * for the Yield Stress computed by (using a Voce hardening term): | ||
+ | $$ | ||
+ | \sigma_{yield} | ||
+ | $$ | ||
+ | |||
+ | === Parameters === | ||
+ | |||
+ | ^ Name | ||
+ | |$KK $ | ||
+ | |$M0 $ | ||
+ | |$As $ | ||
+ | |$Zs $ | ||
+ | |$Ms $ | ||
+ | |$C $ | '' | ||
+ | |$R $ | '' | ||
+ | |||
+ | |||
+ | ===== PythonYieldStress ===== | ||
+ | |||
+ | User defined Yield Stress by a pythonDirector : | ||
+ | Python Director allows user to define their own Yield Stress law. Four functions has to be defined in the Python Class : a constructor (__init__), a destructor (__del__) that must never be called, and the computation functions : getYieldStress (returning YieldStress) and getYieldHardening (returning h). | ||
+ | See the example below of a Perzyna law : | ||
+ | < | ||
+ | |||
+ | class MyYieldStress(PythonYieldStress): | ||
+ | def __init__(self, | ||
+ | print(" | ||
+ | PythonYieldStress.__init__(self, | ||
+ | self.svm0 = _svm0 | ||
+ | self.h | ||
+ | self.K | ||
+ | self.m | ||
+ | def __del__(self): | ||
+ | print(" | ||
+ | print(" | ||
+ | input('' | ||
+ | exit(1) | ||
+ | def getYieldStress(self, | ||
+ | #print " | ||
+ | if dTime > 0.0: | ||
+ | dEvpl = deltaEvpl/ | ||
+ | else: | ||
+ | dEvpl = 0.0 | ||
+ | sigH = self.svm0+evpl*self.h | ||
+ | sigV = self.K*pow(dEvpl, | ||
+ | # | ||
+ | return sigH+sigV | ||
+ | def getYieldHardening(self, | ||
+ | if dTime > 0.0: | ||
+ | dEvpl = deltaEvpl/ | ||
+ | h = self.h + (self.K*pow(dEvpl, | ||
+ | else: | ||
+ | dEvpl = 0.0 | ||
+ | h = self.h | ||
+ | return h | ||
+ | </ | ||
doc/user/elements/volumes/yield_stress.1373546620.txt.gz · Last modified: 2016/03/30 15:22 (external edit)