This is an old revision of the document!
−Table of Contents
Orthotropic materials
ElastOrthoHypoMaterial
Description
Linear elastic orthotropic material.
The strain-stress relation in the orthotropic frame is written as:
[ε11ε22ε33ε23ε31ε12]=[1E1−ν12E1−ν13E1000−ν12E11E2−ν23E2000−ν13E1−ν23E21E300000012G2300000012G1300000012G12][σ11σ22σ33σ23σ31σ12]
Parameters
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus E1 | YOUNG_MODULUS_1 |
Young Modulus E2 | YOUNG_MODULUS_2 |
Young Modulus E3 | YOUNG_MODULUS_3 |
Poisson ratio ν12 | POISSON_RATIO_12 |
Poisson ratio ν13 | POISSON_RATIO_13 |
Poisson ratio ν23 | POISSON_RATIO_23 |
Shear modulus G12 | SHEAR_MODULUS_12 |
Shear modulus G13 | SHEAR_MODULUS_13 |
Shear modulus G23 | SHEAR_MODULUS_23 |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |
Only the first two orthotropic axes are computed using ORTHO_AX{1,2}_{X,Y,Z}
, the third one being computed as the cross product of the first two.
TmElastOrthoHypoMaterial
Description
Linear thermoelastic orthotropic material with orthotropic thermal conduction law.
Thermal conduction writes in the orthotropic frame \boldsymbol{q}_{cond} = \boldsymbol{K} \nabla T = \left[ \begin{array}{c c c} K_1 & 0 & 0 \\ 0 & K_2 & 0 \\ 0 & 0 & K_3 \end{array} \right] \nabla T, where
Linear thermoelasticity in the orthotropic frame writes \boldsymbol{\sigma} = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}^{th}) = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\alpha} \Delta T), with stress tensor \boldsymbol{\sigma}, initial stress tensor \boldsymbol{\sigma}_0, Hooke's tensor \mathbb{H}, strain tensor (mechanical) \boldsymbol{\varepsilon}, and thermal strain tensor \boldsymbol{\varepsilon}^{th}, which is the product of the temperature variation \Delta T and the thermal expansion (symmetric) tensor \boldsymbol{\alpha}.
Thermoelastic dissipation term \dot{W}^{te} is given by the general (anisotropic) relation \dot{W}^{te} = -\eta_{te} \left(\sum_{i=1}^3 \sum_{j=1}^3 \mathbb{H}_{ijkl} \alpha_{kl} \right)T \frac{\dot{J}}{J}, with
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Density | MASS_DENSITY | TO/TM |
Young Modulus E_1 | YOUNG_MODULUS_1 | TO/TM |
Young Modulus E_2 | YOUNG_MODULUS_2 | TO/TM |
Young Modulus E_3 | YOUNG_MODULUS_3 | TO/TM |
Poisson ratio \nu_{12} | POISSON_RATIO_12 | TO/TM |
Poisson ratio \nu_{13} | POISSON_RATIO_13 | TO/TM |
Poisson ratio \nu_{23} | POISSON_RATIO_23 | TO/TM |
Shear modulus G_{12} | SHEAR_MODULUS_12 | TO/TM |
Shear modulus G_{13} | SHEAR_MODULUS_13 | TO/TM |
Shear modulus G_{23} | SHEAR_MODULUS_23 | TO/TM |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY | - |
Orthotropic axis | ORTHO_AX1_X | - |
Orthotropic axis | ORTHO_AX1_Y | - |
Orthotropic axis | ORTHO_AX1_Z | - |
Orthotropic axis | ORTHO_AX2_X | - |
Orthotropic axis | ORTHO_AX2_Y | - |
Orthotropic axis | ORTHO_AX2_Z | - |
Thermal Expansion \alpha_1 | THERM_EXPANSION_1 | TO/TM |
Thermal Expansion \alpha_2 | THERM_EXPANSION_2 | TO/TM |
Thermal Expansion \alpha_3 | THERM_EXPANSION_3 | TO/TM |
Conductivity K_1 | CONDUCTIVITY_1 | TO/TM |
Conductivity K_2 | CONDUCTIVITY_2 | TO/TM |
Conductivity K_3 | CONDUCTIVITY_3 | TO/TM |
Heat Capacity C_p | HEAT_CAPACITY | TO/TM |
Dissipated thermoelastic power fraction \eta_e | DISSIP_TE | - |
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | DISSIP_TQ | - |
EpIsoHOrthoHypoMaterial
Description
Elastoplastic orthotropic material with isotropic hardening.
The elastic part follows the same relation as the linear orthotropic material.
As in the isotropic case, the yield stress verifies the constraint:
f=\overline{\sigma}-\sigma_{yield}=0
where \overline{\sigma} is an equivalent stress, specific to orthotropic materials. See for example the criterion for long-fiber composites.
Parameters
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus E_1 | YOUNG_MODULUS_1 |
Young Modulus E_2 | YOUNG_MODULUS_2 |
Young Modulus E_3 | YOUNG_MODULUS_3 |
Poisson ratio \nu_{12} | POISSON_RATIO_12 |
Poisson ratio \nu_{13} | POISSON_RATIO_13 |
Poisson ratio \nu_{23} | POISSON_RATIO_23 |
Shear modulus G_{12} | SHEAR_MODULUS_12 |
Shear modulus G_{13} | SHEAR_MODULUS_13 |
Shear modulus G_{23} | SHEAR_MODULUS_23 |
Number of the material law which defines the yield stress \sigma_{yield} | YIELD_NUM |
Number of the plastic criterion | PLASTICCRITERION_NUM |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |
DamageEpIsoHOrthoHypoMaterial
Description
Elastoplastic orthotropic material with isotropic hardening and damage.
The elastoplastic part has the same characteristics as the elastoplastic orthotropic material
The damage part consists in a material softening governed by one or several damage variables d_{ij}, whose value is included between 0 and 1. Typically, a modulus equal to E_i before damage becomes (1-d_i)\,E_i once damage appears, but not always. The way damage is induced depends on the law defined by the parameter DAMAGE_NUM
. See for example the basic laws
Parameters
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus E_1 | YOUNG_MODULUS_1 |
Young Modulus E_2 | YOUNG_MODULUS_2 |
Young Modulus E_3 | YOUNG_MODULUS_3 |
Poisson ratio \nu_{12} | POISSON_RATIO_12 |
Poisson ratio \nu_{13} | POISSON_RATIO_13 |
Poisson ratio \nu_{23} | POISSON_RATIO_23 |
Shear modulus G_{12} | SHEAR_MODULUS_12 |
Shear modulus G_{13} | SHEAR_MODULUS_13 |
Shear modulus G_{23} | SHEAR_MODULUS_23 |
Number of the material law which defines the yield stress \sigma_{yield} | YIELD_NUM |
Number of the plastic criterion | PLASTICCRITERION_NUM |
Number of the damage law | DAMAGE_NUM |
Maximal value of damage variables (failure) | DAMAGE_MAX |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |