Table of Contents
Isotropic hardening
The IsotropicHardening class manages all isotropic hardening laws in Metafor, which are described below.
LinearIsotropicHardening
Description
Linear isotropic hardening
$$ \sigma_{vm} = \sigma^{el} + h\, \bar{\varepsilon}^{vp} $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| Initial yield stress $\sigma^{el}$ |   IH_SIGEL   |   TM/TO          | 
	
| Plastic Modulus $h $ |     IH_H     |   TM/TO          | 
	
NB: the plastic modulus is defined as $h = \frac{E E_T}{E - E_T} $, where $E$ is the Young's modulus and $E_T$ the tangent modulus.
SaturatedIsotropicHardening
Description
Saturated isotropic hardening
$$ \sigma_{vm} = \sigma^{el} + Q\left(1-\exp\left(-\xi \bar{\varepsilon}^{vp}\right)\right) $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| Initial yield stress $\sigma^{el}$ |   IH_SIGEL   |   TM/TO          | 
	
| $Q $ |     IH_Q     |   TM/TO          | 
	
| $\xi$ |    IH_KSI    |   TM/TO          | 
	
DoubleSaturatedIsotropicHardening
Description
Double saturated isotropic hardening
$$ \sigma_{vm} = \sigma^{el} + Q_1\left(1-\exp\left(-\xi_1 \bar{\varepsilon}^{vp}\right)\right) + Q_2\left(1-\exp\left(-\xi_2 \bar{\varepsilon}^{vp}\right)\right) $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| Initial yield stress $\sigma^{el}$ |   IH_SIGEL   |   TM/TO          | 
	
| $Q_1$ |    IH_Q1     |   TM/TO          | 
	
| $\xi_1$ |    IH_KSI1    |   TM/TO          | 
	
| $Q_2$ |    IH_Q2     |   TM/TO          | 
	
| $\xi_2$ |    IH_KSI2    |   TM/TO          | 
	
RambergOsgoodIsotropicHardening
Description
Ramberg-Osgood isotropic hardening
$$ \sigma_{vm} = \sigma^{el} \left(1+A\, \bar{\varepsilon}^{vp}\right)^{\frac{1}{n}} $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| Initial yield stress $\sigma^{el}$ |   IH_SIGEL   |   TM/TO          | 
	
| $A $ |     IH_A     |   TM/TO          | 
	
| $n $ |     IH_N     |   TM/TO          | 
	
SwiftIsotropicHardening
Description
Swift isotropic hardening (a more common formulation of Ramberg - Osgood)
$$ \sigma_{vm} = \sigma^{el} +B \left(\bar{\varepsilon}^{vp}\right)^{n} $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| Initial yield stress $\sigma^{el}$ |   IH_SIGEL   |   TM/TO          | 
	
| $B $ |     IH_B     |   TM/TO          | 
	
| $n $ |     IH_N     |   TM/TO          | 
	
KrupkowskyIsotropicHardening
Description
Krupkowski isotropic hardening
$$ \sigma_{vm} = K \left(\bar{\varepsilon}^{vp}_{0} + \bar{\varepsilon}^{vp}\right)^{n} $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| Initial equivalent plastic strain $\bar{\varepsilon}^{vp}_{0}$ |   IH_EVPL0   |   TM/TO          | 
	
| strength coefficient $K$ |     IH_K     |   TM/TO          | 
	
| strain hardening exponent $n$ |     IH_N     |   TM/TO          | 
	
Nl8pIsotropicHardening
Description
Nonlinear isotropic hardening with 8 parameters. First one implemented, can be used to do almost everything.
$$ \sigma_{vm} = \left(P_2-P_1\right) \left(1-\exp\left(-P_3\bar{\varepsilon}^{vp}\right)\right) + P_4\left(\bar{\varepsilon}^{vp}\right)^{P_5} + $$ $$ + P_1\left(1+P_6\bar{\varepsilon}^{vp}\right)^{P_7} + P_8\bar{\varepsilon}^{vp} $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| $P_1$ |     IH_P1    |      TM/TO       | 
	
| $P_2$ |     IH_P2    |      TM/TO       | 
	
| $P_3$ |     IH_P3    |      TM/TO       | 
	
| $P_4$ |     IH_P4    |      TM/TO       | 
	
| $P_5$ |     IH_P5    |      TM/TO       | 
	
| $P_6$ |     IH_P6    |      TM/TO       | 
	
| $P_7$ |     IH_P7    |      TM/TO       | 
	
| $P_8$ |     IH_P8    |      TM/TO       | 
	
FunctIsotropicHardening
Description
Piecewise linear isotropic hardening. A function is associated to the yield stress.
$$ \sigma_{vm} = \sigma^{el} \, * \, f\left(\bar{\varepsilon}^{vp}\right) $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| Initial yield stress $\sigma^{el}$ |   IH_SIGEL   |   IF_EPL          | 
	
An Functions y=f(t) must be associated to IH_SIGEL (depending on Field(IF_EPL)).
PowerIsotropicHardening
Description
$$ \sigma_{vm}= P_1 \left[ P_2 \sigma_{vm} + P_3 \overline{\varepsilon}^{vp} \right] ^{P_4} $$
This law is integrated with an iterative method.
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| $P_1$ |     IH_P1     |       TM/TO        | 
	
| $P_2$ |     IH_P2     |       TM/TO        | 
	
| $P_3$ |     IH_P3     |       TM/TO        | 
	
| $P_4$ |     IH_P4     |       TM/TO        | 
	
AutesserreIsotropicHardening
Description
“Smatch” isotropic hardening.
$$ \sigma_{vm}= \left( P_1 + P_2 \overline{\varepsilon}^{vp} \right) \left( 1 - P_3 \exp \left( -P_4 \overline{\varepsilon}^{vp} \right) \right) + P_5 $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| $P_1$ |     IH_P1     |       TM/TO        | 
	
| $P_2$ |     IH_P2     |       TM/TO        | 
	
| $P_3$ |     IH_P3     |       TM/TO        | 
	
| $P_4$ |     IH_P4     |       TM/TO        | 
	
| $P_5$ |     IH_P5     |       TM/TO        | 
	
GoijaertsIsotropicHardening
Description
“Goijaerts” isotropic hardening
$$ \sigma_{vm}= \sigma_{el} + M_1 \left( 1-\exp(-\frac{\overline{\varepsilon}^{vp}}{M_2})\right) + M_3 \sqrt{\overline{\varepsilon}^{vp}} + M_4 \overline{\varepsilon}^{vp} $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| $M_1$ |     IH_M1     |       TM/TO        | 
	
| $M_2$ |     IH_M2     |       TM/TO        | 
	
| $M_3$ |     IH_M3     |       TM/TO        | 
	
| $M_4$ |     IH_M4     |       TM/TO        | 
	
KocksMeckingIsotropicHardening
Description
“Kocks-Mecking” isotropic hardening
$$ \sigma_{y} = \sigma_{y}^{0} + \frac{\Theta_{0}}{\beta} [ 1-exp(-\beta \bar{\varepsilon}^{vp}) ] \;\;\; si \;\;\; \bar{\varepsilon}^{vp} < \bar{\varepsilon}^{vp}_{tr} $$
$$ \sigma_{y} = \sigma_{y}^{tr} + \Theta_{IV} \left( \bar{\varepsilon}^{vp} - \bar{\varepsilon}^{vp}_{tr}\right) \;\;\; si \;\;\; \bar{\varepsilon}^{vp} >\bar{\varepsilon}^{vp}_{tr} $$
where the transition yield stress between stages 3 and 4 is defined as
$$ \sigma_{y}^{tr} = \sigma_{y}^{0} + \frac{\Theta_{0}-\Theta_{IV}}{\beta} $$
and the corresponding yield strain as
$$ \bar{\varepsilon}^{vp}_{tr} = \frac{1}{\beta} \ln \left(\frac{\Theta_{0}}{\Theta_{IV}}\right) $$
Parameters
| Name | Metafor Code | Dependency | 
|---|---|---|
| $\sigma_0$ |    IH_SIGEL       |   TM/TO            | 
	
| $\beta$ |    KM_BETA        |   TM/TO            | 
	
| $\Theta_{0}$ |    KM_THETA0      |   TM/TO            | 
	
| $\Theta_{IV}$ |    KM_THETA4      |   TM/TO            | 
	
Python
User defined Isotropic Hardening by a pythonDirector :
Python Director allows user to define their own Isotropic Hardening law. Five functions has to be defined in the Python Class :
- a constructor (
__init__
),
 - a destructor (
__del__
) that must never be called,
 - computeSvm (epl, pLaw)
 - computeH (epl, pLaw)
 - computePotential (epl, pLaw) for hyperElastics models
 
See the example below of a Linear Isotropic Hardening :
class MyIsoH(PythonIsotropicHardening):
    def __init__(self, _no, _svm0, _h):
        print("MyIsoH : __init__")
        PythonIsotropicHardening.__init__(self,_no)
        self.svm0 = _svm0
        self.h    = _h
        print("no = ", _no)
        print("self.svm0 = ", self.svm0)
        print("self.h = ", self.h)
        print("MyIsoH : __init__ finished")
        print("computeSvm(0.0) = " , self.computeSvm(0.0, None))
    def __del__(self):
        print("MyIsoH : __del__")
        print("callToDestructor of MyIsoH not allowed. Add MyIsoH.__disown__()")
        input('')
        exit(1)
    def computeSvm(self, epl, pLaw) :
        #print "MyIsoH compute SVM"
        return self.svm0+epl*self.h
    def computeH(self, epl, pLaw) :
        #print "MyIsoH compute H"
        return self.h
    def computePotential(self, epl, pLaw) :
        #print "MyIsoH compute Potential"
        return (self.svm0+self.h*epl*0.5)*epl
