−Table of Contents
Orthotropic materials
ElastOrthoHypoMaterial
Description
Linear elastic orthotropic material.
The strain-stress relation in the orthotropic frame is written as:
[ε11ε22ε33ε23ε31ε12]=[1E1−ν12E1−ν13E1000−ν12E11E2−ν23E2000−ν13E1−ν23E21E300000012G2300000012G1300000012G12][σ11σ22σ33σ23σ31σ12]
Parameters
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus E1 | YOUNG_MODULUS_1 |
Young Modulus E2 | YOUNG_MODULUS_2 |
Young Modulus E3 | YOUNG_MODULUS_3 |
Poisson ratio ν12 | POISSON_RATIO_12 |
Poisson ratio ν13 | POISSON_RATIO_13 |
Poisson ratio ν23 | POISSON_RATIO_23 |
Shear modulus G12 | SHEAR_MODULUS_12 |
Shear modulus G13 | SHEAR_MODULUS_13 |
Shear modulus G23 | SHEAR_MODULUS_23 |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |
Only the first two orthotropic axes are computed using ORTHO_AX{1,2}_{X,Y,Z}
, the third one being computed as the cross product of the first two.
TmElastOrthoHypoMaterial
Metafor version >=3536
Description
Linear thermoelastic orthotropic material with orthotropic thermal conduction law.
Thermal conduction writes in the orthotropic frame K ∇T=[K1000K2000K3]∇T, where K is the orthotropic conduction matrix (in material axes) and ∇T is the temperature gradient.
Linear thermoelasticity in the orthotropic frame writes σ=σ0+H:(ε−εth)=σ0+H:(ε−αΔT), with stress tensor σ, initial stress tensor σ0, Hooke's tensor H, strain tensor (mechanical) ε, and thermal strain tensor εth, which is the product of the temperature variation ΔT and the thermal expansion (symmetric) tensor α.
Thermoelastic dissipation term ˙Wte is given by the general (anisotropic) relation ˙Wte=−ηte(3∑i=13∑j=1Hijklαkl)T˙JJ, with fraction of heat dissipated thermoelastic energy ηte and determinant of the Jacobian matrix J.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Density | MASS_DENSITY | TO/TM |
Young Modulus E1 | YOUNG_MODULUS_1 | TO/TM |
Young Modulus E2 | YOUNG_MODULUS_2 | TO/TM |
Young Modulus E3 | YOUNG_MODULUS_3 | TO/TM |
Poisson ratio ν12 | POISSON_RATIO_12 | TO/TM |
Poisson ratio ν13 | POISSON_RATIO_13 | TO/TM |
Poisson ratio ν23 | POISSON_RATIO_23 | TO/TM |
Shear modulus G12 | SHEAR_MODULUS_12 | TO/TM |
Shear modulus G13 | SHEAR_MODULUS_13 | TO/TM |
Shear modulus G23 | SHEAR_MODULUS_23 | TO/TM |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY | - |
Orthotropic axis | ORTHO_AX1_X | - |
Orthotropic axis | ORTHO_AX1_Y | - |
Orthotropic axis | ORTHO_AX1_Z | - |
Orthotropic axis | ORTHO_AX2_X | - |
Orthotropic axis | ORTHO_AX2_Y | - |
Orthotropic axis | ORTHO_AX2_Z | - |
Thermal Expansion α1 | THERM_EXPANSION_1 | TO/TM |
Thermal Expansion α2 | THERM_EXPANSION_2 | TO/TM |
Thermal Expansion α3 | THERM_EXPANSION_3 | TO/TM |
Conductivity K1 | CONDUCTIVITY_1 | TO/TM |
Conductivity K2 | CONDUCTIVITY_2 | TO/TM |
Conductivity K3 | CONDUCTIVITY_3 | TO/TM |
Heat Capacity Cp | HEAT_CAPACITY | TO/TM |
Dissipated thermoelastic power fraction ηe | DISSIP_TE | - |
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | DISSIP_TQ | - |
EpIsoHOrthoHypoMaterial
Description
Elastoplastic orthotropic material with isotropic hardening.
The elastic part follows the same relation as the linear orthotropic material.
As in the isotropic case, the yield stress verifies the constraint:
f=¯σ−σyield=0
where ¯σ is an equivalent stress, specific to orthotropic materials. See for example the criterion for long-fiber composites.
Parameters
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus E1 | YOUNG_MODULUS_1 |
Young Modulus E2 | YOUNG_MODULUS_2 |
Young Modulus E3 | YOUNG_MODULUS_3 |
Poisson ratio ν12 | POISSON_RATIO_12 |
Poisson ratio ν13 | POISSON_RATIO_13 |
Poisson ratio ν23 | POISSON_RATIO_23 |
Shear modulus G12 | SHEAR_MODULUS_12 |
Shear modulus G13 | SHEAR_MODULUS_13 |
Shear modulus G23 | SHEAR_MODULUS_23 |
Number of the material law which defines the yield stress σyield | YIELD_NUM |
Number of the plastic criterion | PLASTICCRITERION_NUM |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |
TmEpIsoHOrthoHypoMaterial
Metafor version >=3536
Description
Thermomechanical elastoplastic orthotropic material with isotropic hardening. The thermal part of the law is similar to the one of the linear thermoelastic orthotropic material.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Density | MASS_DENSITY | TO/TM |
Young Modulus E1 | YOUNG_MODULUS_1 | TO/TM |
Young Modulus E2 | YOUNG_MODULUS_2 | TO/TM |
Young Modulus E3 | YOUNG_MODULUS_3 | TO/TM |
Poisson ratio ν12 | POISSON_RATIO_12 | TO/TM |
Poisson ratio ν13 | POISSON_RATIO_13 | TO/TM |
Poisson ratio ν23 | POISSON_RATIO_23 | TO/TM |
Shear modulus G12 | SHEAR_MODULUS_12 | TO/TM |
Shear modulus G13 | SHEAR_MODULUS_13 | TO/TM |
Shear modulus G23 | SHEAR_MODULUS_23 | TO/TM |
Number of the material law which defines the yield stress σyield | YIELD_NUM | - |
Number of the plastic criterion | PLASTICCRITERION_NUM | - |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY | - |
Orthotropic axis | ORTHO_AX1_X | - |
Orthotropic axis | ORTHO_AX1_Y | - |
Orthotropic axis | ORTHO_AX1_Z | - |
Orthotropic axis | ORTHO_AX2_X | - |
Orthotropic axis | ORTHO_AX2_Y | - |
Orthotropic axis | ORTHO_AX2_Z | - |
Thermal Expansion α1 | THERM_EXPANSION_1 | TO/TM |
Thermal Expansion α2 | THERM_EXPANSION_2 | TO/TM |
Thermal Expansion α3 | THERM_EXPANSION_3 | TO/TM |
Conductivity K1 | CONDUCTIVITY_1 | TO/TM |
Conductivity K2 | CONDUCTIVITY_2 | TO/TM |
Conductivity K3 | CONDUCTIVITY_3 | TO/TM |
Heat Capacity Cp | HEAT_CAPACITY | TO/TM |
Dissipated thermoelastic power fraction ηe | DISSIP_TE | - |
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | DISSIP_TQ | - |
DamageEpIsoHOrthoHypoMaterial
Description
Elastoplastic orthotropic material with isotropic hardening and damage.
The elastoplastic part has the same characteristics as the elastoplastic orthotropic material
The damage part consists in a material softening governed by one or several damage variables dij, whose value is included between 0 and 1. Typically, a modulus equal to Ei before damage becomes (1−di)Ei once damage appears, but not always. The way damage is induced depends on the law defined by the parameter DAMAGE_NUM
. See for example the basic laws
Parameters
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus E1 | YOUNG_MODULUS_1 |
Young Modulus E2 | YOUNG_MODULUS_2 |
Young Modulus E3 | YOUNG_MODULUS_3 |
Poisson ratio ν12 | POISSON_RATIO_12 |
Poisson ratio ν13 | POISSON_RATIO_13 |
Poisson ratio ν23 | POISSON_RATIO_23 |
Shear modulus G12 | SHEAR_MODULUS_12 |
Shear modulus G13 | SHEAR_MODULUS_13 |
Shear modulus G23 | SHEAR_MODULUS_23 |
Number of the material law which defines the yield stress σyield | YIELD_NUM |
Number of the plastic criterion | PLASTICCRITERION_NUM |
Number of the damage law | DAMAGE_NUM |
Maximal value of damage variables (failure) | DAMAGE_MAX |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |