Table of Contents
Orthotropic materials
ElastOrthoHypoMaterial
Description
Linear orthotropic material.
The strain-stress relation in the orthotropic frame is written as:
$$ \left[ \begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{23} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{array} \right] = \left[ \begin{array}{cccccc} \frac{1}{E_{1}} & -\frac{\nu_{12}}{E_{1}} & -\frac{\nu_{13}}{E_{1}} & 0 & 0 & 0 \\ -\frac{\nu_{12}}{E_{1}} & \frac{1}{E_{2}} & -\frac{\nu_{23}}{E_{2}} & 0 & 0 & 0 \\ -\frac{\nu_{13}}{E_{1}} & -\frac{\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2\,G_{23}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2\,G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2\,G_{12}} \end{array} \right] \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{12} \end{array} \right] $$
Parameters
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus $E_1$ | YOUNG_MODULUS_1 |
Young Modulus $E_2$ | YOUNG_MODULUS_2 |
Young Modulus $E_3$ | YOUNG_MODULUS_3 |
Poisson ratio $\nu_{12}$ | POISSON_RATIO_12 |
Poisson ratio $\nu_{13}$ | POISSON_RATIO_13 |
Poisson ratio $\nu_{23}$ | POISSON_RATIO_23 |
Shear modulus $G_{12}$ | SHEAR_MODULUS_12 |
Shear modulus $G_{13}$ | SHEAR_MODULUS_13 |
Shear modulus $G_{23}$ | SHEAR_MODULUS_23 |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |
Only the first two orthotropic axes are computed using ORTHO_AX{1,2}_{X,Y,Z}
, the third one being computed as the cross product of the first two.
EpIsoHOrthoHypoMaterial
Description
Elastoplastic orthotropic material with isotropic hardening.
The elastic part follows the same relation as the linear orthotropic material.
As in the isotropic case, the yield stress verifies the constraint:
$$ f=\overline{\sigma}-\sigma_{yield}=0 $$
where $\overline{\sigma}$ is an equivalent stress, specific to orthotropic materials. See for example the criterion for long-fiber composites.
Parameters
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus $E_1$ | YOUNG_MODULUS_1 |
Young Modulus $E_2$ | YOUNG_MODULUS_2 |
Young Modulus $E_3$ | YOUNG_MODULUS_3 |
Poisson ratio $\nu_{12}$ | POISSON_RATIO_12 |
Poisson ratio $\nu_{13}$ | POISSON_RATIO_13 |
Poisson ratio $\nu_{23}$ | POISSON_RATIO_23 |
Shear modulus $G_{12}$ | SHEAR_MODULUS_12 |
Shear modulus $G_{13}$ | SHEAR_MODULUS_13 |
Shear modulus $G_{23}$ | SHEAR_MODULUS_23 |
Number of the material law which defines the yield stress $\sigma_{yield}$ | YIELD_NUM |
Number of the plastic criterion | PLASTICCRITERION_NUM |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |
DamageEpIsoHOrthoHypoMaterial
Description
Elastoplastic orthotropic material with isotropic hardening and damage.
The elastoplastic part has the same characteristics as the elastoplastic orthotropic material
The damage part consists in a material softening governed by one or several damage variables $d_{ij}$, whose value is included between 0 and 1. Typically, a modulus equal to $E_i$ before damage becomes $(1-d_i)\,E_i$ once damage appears, but not always. The way damage is induced depends on the law defined by the parameter DAMAGE_NUM
. See for example the basic laws
Parameters
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus $E_1$ | YOUNG_MODULUS_1 |
Young Modulus $E_2$ | YOUNG_MODULUS_2 |
Young Modulus $E_3$ | YOUNG_MODULUS_3 |
Poisson ratio $\nu_{12}$ | POISSON_RATIO_12 |
Poisson ratio $\nu_{13}$ | POISSON_RATIO_13 |
Poisson ratio $\nu_{23}$ | POISSON_RATIO_23 |
Shear modulus $G_{12}$ | SHEAR_MODULUS_12 |
Shear modulus $G_{13}$ | SHEAR_MODULUS_13 |
Shear modulus $G_{23}$ | SHEAR_MODULUS_23 |
Number of the material law which defines the yield stress $\sigma_{yield}$ | YIELD_NUM |
Number of the plastic criterion | PLASTICCRITERION_NUM |
Number of the damage law | DAMAGE_NUM |
Maximal value of damage variables (failure) | DAMAGE_MAX |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |