doc:user:elements:volumes:ortho_hypo_materials
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
doc:user:elements:volumes:ortho_hypo_materials [2013/07/11 16:18] – joris | doc:user:elements:volumes:ortho_hypo_materials [2025/07/22 11:56] (current) – [DamageEpIsoHOrthoHypoMaterial] papeleux | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | ====== Orthotropic materials ====== | ||
+ | ===== ElastOrthoHypoMaterial ===== | ||
+ | |||
+ | === Description === | ||
+ | |||
+ | Linear elastic orthotropic material. | ||
+ | |||
+ | The strain-stress relation in the orthotropic frame is written as: | ||
+ | |||
+ | |||
+ | $$ | ||
+ | \left[ | ||
+ | \begin{array}{c} | ||
+ | \varepsilon_{11} \\ | ||
+ | \varepsilon_{22} \\ | ||
+ | \varepsilon_{33} \\ | ||
+ | \varepsilon_{23} \\ | ||
+ | \varepsilon_{31} \\ | ||
+ | \varepsilon_{12} | ||
+ | \end{array} | ||
+ | \right] | ||
+ | = | ||
+ | \left[ | ||
+ | \begin{array}{cccccc} | ||
+ | \frac{1}{E_{1}} & -\frac{\nu_{12}}{E_{1}} & -\frac{\nu_{13}}{E_{1}} & 0 & 0 & 0 \\ | ||
+ | -\frac{\nu_{12}}{E_{1}} & \frac{1}{E_{2}} & -\frac{\nu_{23}}{E_{2}} & 0 & 0 & 0 \\ | ||
+ | -\frac{\nu_{13}}{E_{1}} & -\frac{\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 & \frac{1}{2\, | ||
+ | 0 & 0 & 0 & 0 & \frac{1}{2\, | ||
+ | 0 & 0 & 0 & 0 & 0 & \frac{1}{2\, | ||
+ | \end{array} | ||
+ | \right] | ||
+ | \left[ | ||
+ | \begin{array}{c} | ||
+ | \sigma_{11} \\ | ||
+ | \sigma_{22} \\ | ||
+ | \sigma_{33} \\ | ||
+ | \sigma_{23} \\ | ||
+ | \sigma_{31} \\ | ||
+ | \sigma_{12} | ||
+ | \end{array} | ||
+ | \right] | ||
+ | $$ | ||
+ | |||
+ | === Parameters === | ||
+ | |||
+ | ^ | ||
+ | | Density | ||
+ | | Young Modulus $E_1$ | '' | ||
+ | | Young Modulus $E_2$ | '' | ||
+ | | Young Modulus $E_3$ | '' | ||
+ | | Poisson ratio $\nu_{12}$ | ||
+ | | Poisson ratio $\nu_{13}$ | ||
+ | | Poisson ratio $\nu_{23}$ | ||
+ | | Shear modulus $G_{12}$ | ||
+ | | Shear modulus $G_{13}$ | ||
+ | | Shear modulus $G_{23}$ | ||
+ | | Objectivity method | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis initialized by mesh construction \\ boolean : True - False (def) \\ override OrthoAxis definition | ||
+ | |||
+ | Only the first two orthotropic axes are computed using '' | ||
+ | |||
+ | ===== TmElastOrthoHypoMaterial ===== | ||
+ | :!: Metafor version >=3536 | ||
+ | === Description === | ||
+ | Linear thermoelastic orthotropic material with orthotropic thermal conduction law. | ||
+ | |||
+ | Thermal conduction writes in the orthotropic frame | ||
+ | $$ | ||
+ | \boldsymbol{K}~\nabla T = \left[ | ||
+ | \begin{array}{c c c} | ||
+ | K_1 & 0 & 0 \\ | ||
+ | 0 & K_2 & 0 \\ | ||
+ | 0 & 0 & K_3 | ||
+ | \end{array} | ||
+ | \right] \nabla T, | ||
+ | $$ | ||
+ | where $\boldsymbol{K}$ is the orthotropic conduction matrix (in material axes) and $\nabla T$ is the temperature gradient. | ||
+ | |||
+ | Linear thermoelasticity in the orthotropic frame writes | ||
+ | $$ | ||
+ | \boldsymbol{\sigma} = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}^{th}) = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\alpha} \Delta T), | ||
+ | $$ | ||
+ | with stress tensor $\boldsymbol{\sigma}$, | ||
+ | |||
+ | Thermoelastic dissipation term $\dot{W}^{te}$ is given by the general (anisotropic) relation | ||
+ | $$ | ||
+ | \dot{W}^{te} = -\eta_{te} \left(\sum_{i=1}^3 \sum_{j=1}^3 \mathbb{H}_{ijkl} \alpha_{kl} \right)T \frac{\dot{J}}{J}, | ||
+ | $$ | ||
+ | with fraction of heat dissipated thermoelastic energy $\eta_{te}$ and determinant of the Jacobian matrix $J$. | ||
+ | |||
+ | === Parameters === | ||
+ | ^ | ||
+ | | Density | ||
+ | | Young Modulus $E_1$ | '' | ||
+ | | Young Modulus $E_2$ | '' | ||
+ | | Young Modulus $E_3$ | '' | ||
+ | | Poisson ratio $\nu_{12}$ | ||
+ | | Poisson ratio $\nu_{13}$ | ||
+ | | Poisson ratio $\nu_{23}$ | ||
+ | | Shear modulus $G_{12}$ | ||
+ | | Shear modulus $G_{13}$ | ||
+ | | Shear modulus $G_{23}$ | ||
+ | | Objectivity method | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis initialized by mesh construction \\ boolean : True - False (def) \\ override OrthoAxis definition | ||
+ | | Thermal Expansion $\alpha_1$ | ||
+ | | Thermal Expansion $\alpha_2$ | ||
+ | | Thermal Expansion $\alpha_3$ | ||
+ | | Conductivity $K_1$ | '' | ||
+ | | Conductivity $K_2$ | '' | ||
+ | | Conductivity $K_3$ | '' | ||
+ | | Heat Capacity $C_p$ | '' | ||
+ | | Dissipated thermoelastic power fraction $\eta_e$ | ||
+ | | Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | ||
+ | |||
+ | ===== EpIsoHOrthoHypoMaterial ===== | ||
+ | |||
+ | === Description === | ||
+ | |||
+ | Elastoplastic orthotropic material with isotropic hardening. | ||
+ | |||
+ | The elastic part follows the same relation as the [[# | ||
+ | |||
+ | As in the isotropic case, the yield stress verifies the constraint: | ||
+ | |||
+ | $$ | ||
+ | f=\overline{\sigma}-\sigma_{yield}=0 | ||
+ | $$ | ||
+ | |||
+ | where $\overline{\sigma}$ is an equivalent stress, specific to orthotropic materials. See for example the [[doc: | ||
+ | |||
+ | === Parameters === | ||
+ | |||
+ | ^ | ||
+ | | Density | ||
+ | | Young Modulus $E_1$ | '' | ||
+ | | Young Modulus $E_2$ | '' | ||
+ | | Young Modulus $E_3$ | '' | ||
+ | | Poisson ratio $\nu_{12}$ | ||
+ | | Poisson ratio $\nu_{13}$ | ||
+ | | Poisson ratio $\nu_{23}$ | ||
+ | | Shear modulus $G_{12}$ | ||
+ | | Shear modulus $G_{13}$ | ||
+ | | Shear modulus $G_{23}$ | ||
+ | | Number of the material law which defines the yield stress $\sigma_{yield}$ | ||
+ | | Number of the plastic criterion | ||
+ | | Objectivity method \\ (Jaumann = 0, GreenNaghdi = 1)| '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis initialized by mesh construction \\ boolean : True - False (def) \\ override OrthoAxis definition | ||
+ | |||
+ | ===== TmEpIsoHOrthoHypoMaterial ===== | ||
+ | :!: Metafor version >=3536 | ||
+ | === Description === | ||
+ | Thermomechanical elastoplastic orthotropic material with isotropic hardening. The thermal part of the law is similar to the one of the [[# | ||
+ | |||
+ | === Parameters === | ||
+ | ^ | ||
+ | | Density | ||
+ | | Young Modulus $E_1$ | '' | ||
+ | | Young Modulus $E_2$ | '' | ||
+ | | Young Modulus $E_3$ | '' | ||
+ | | Poisson ratio $\nu_{12}$ | ||
+ | | Poisson ratio $\nu_{13}$ | ||
+ | | Poisson ratio $\nu_{23}$ | ||
+ | | Shear modulus $G_{12}$ | ||
+ | | Shear modulus $G_{13}$ | ||
+ | | Shear modulus $G_{23}$ | ||
+ | | Number of the material law which defines the yield stress $\sigma_{yield}$ | ||
+ | | Number of the plastic criterion | ||
+ | | Objectivity method | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis initialized by mesh construction \\ boolean : True - False (def) \\ override OrthoAxis definition | ||
+ | | Thermal Expansion $\alpha_1$ | ||
+ | | Thermal Expansion $\alpha_2$ | ||
+ | | Thermal Expansion $\alpha_3$ | ||
+ | | Conductivity $K_1$ | '' | ||
+ | | Conductivity $K_2$ | '' | ||
+ | | Conductivity $K_3$ | '' | ||
+ | | Heat Capacity $C_p$ | '' | ||
+ | | Dissipated thermoelastic power fraction $\eta_e$ | ||
+ | | Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | ||
+ | ===== DamageEpIsoHOrthoHypoMaterial ===== | ||
+ | |||
+ | === Description === | ||
+ | |||
+ | Elastoplastic orthotropic material with isotropic hardening and damage. | ||
+ | |||
+ | The elastoplastic part has the same characteristics as the [[# | ||
+ | |||
+ | The damage part consists in a material softening governed by one or several damage variables $d_{ij}$, whose value is included between 0 and 1. Typically, a modulus equal to $E_i$ before damage becomes $(1-d_i)\, | ||
+ | |||
+ | === Parameters === | ||
+ | |||
+ | ^ | ||
+ | | Density | ||
+ | | Young Modulus $E_1$ | '' | ||
+ | | Young Modulus $E_2$ | '' | ||
+ | | Young Modulus $E_3$ | '' | ||
+ | | Poisson ratio $\nu_{12}$ | ||
+ | | Poisson ratio $\nu_{13}$ | ||
+ | | Poisson ratio $\nu_{23}$ | ||
+ | | Shear modulus $G_{12}$ | ||
+ | | Shear modulus $G_{13}$ | ||
+ | | Shear modulus $G_{23}$ | ||
+ | | Number of the material law which defines the yield stress $\sigma_{yield}$ | ||
+ | | Number of the plastic criterion | ||
+ | | Number of the damage law | '' | ||
+ | | Maximal value of damage variables (failure) | ||
+ | | Objectivity method \\ (Jaumann = 0, GreenNaghdi = 1)| '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis | '' | ||
+ | | Orthotropic axis initialized by mesh construction \\ boolean : True - False (def) \\ override OrthoAxis definition |