Processing math: 100%

Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:isohard

This is an old revision of the document!


Isotropic hardening

The IsotropicHardening class manages all isotropic hardening laws in Metafor, which are described below.

LinearIsotropicHardening

Description

Linear isotropic hardening

σvm=σel+hˉεvp

Parameters

Name Metafor Code Dependency
Initial yield stress σel IH_SIGEL TM/TO
Plastic Modulus h IH_H TM/TO

NB: the plastic modulus is defined as h=EETEET, where E is the Young modulus and ET the tangent modulus.

SaturatedIsotropicHardening

Description

Saturated isotropic hardening

σvm=σel+Q(1exp(ξˉεvp))

Parameters

Name Metafor Code Dependency
Initial yield stress σel IH_SIGEL TM/TO
Q IH_Q TM/TO
ξ IH_KSI TM/TO

DoubleSaturatedIsotropicHardening

Description

Double saturated isotropic hardening

σvm=σel+Q1(1exp(ξ1ˉεvp))+Q2(1exp(ξ2ˉεvp))

Parameters

Name Metafor Code Dependency
Initial yield stress σel IH_SIGEL TM/TO
Q1 IH_Q1 TM/TO
ξ1 IH_KSI1 TM/TO
Q2 IH_Q2 TM/TO
ξ2 IH_KSI2 TM/TO

RambergOsgoodIsotropicHardening

Description

Ramberg-Osgood isotropic hardening

σvm=σel(1+Aˉεvp)1n

Parameters

Name Metafor Code Dependency
Initial yield stress σel IH_SIGEL TM/TO
A IH_A TM/TO
n IH_N TM/TO

SwiftIsotropicHardening

Description

Swift isotropic hardening (a more common formulation of Ramberg - Osgood)

σvm=σel+B(ˉεvp)n

Parameters

Name Metafor Code Dependency
Initial yield stress σel IH_SIGEL TM/TO
B IH_B TM/TO
n IH_N TM/TO

KrupkowskyIsotropicHardening

Description

Krupkowski isotropic hardening

σvm=K(ˉεvp0+ˉεvp)n

Parameters

Name Metafor Code Dependency
Initial equivalent plastic strain ˉεvp0 IH_EVPL0 TM/TO
strength coefficient K IH_K TM/TO
strain hardening exponent n IH_N TM/TO

Nl8pIsotropicHardening

Description

Nonlinear isotropic hardening with 8 parameters. First one implemented, can be used to do almost everything.

σvm=(P2P1)(1exp(P3ˉεvp))+P4(ˉεvp)P5+ +P1(1+P6ˉεvp)P7+P8ˉεvp

Parameters

Name Metafor Code Dependency
P1 IH_P1 TM/TO
P2 IH_P2 TM/TO
P3 IH_P3 TM/TO
P4 IH_P4 TM/TO
P5 IH_P5 TM/TO
P6 IH_P6 TM/TO
P7 IH_P7 TM/TO
P8 IH_P8 TM/TO

FunctIsotropicHardening

Description

Piecewise linear isotropic hardening. A function is associated to the yield stress.

σvm=σelf(ˉεvp)

Parameters

Name Metafor Code Dependency
Initial yield stress σel IH_SIGEL IF_EPL

An Functions y=f(t) must be associated to IH_SIGEL (depending on Field(IF_EPL)).

PowerIsotropicHardening

Description

σvm=P1[P2σvm+P3¯εvp]P4

This law is integrated with an iterative method.

Parameters

Name Metafor Code Dependency
P1 IH_P1 TM/TO
P2 IH_P2 TM/TO
P3 IH_P3 TM/TO
P4 IH_P4 TM/TO

AutesserreIsotropicHardening

Description

“Smatch” isotropic hardening.

σvm=(P1+P2¯εvp)(1P3exp(P4¯εvp))+P5

Parameters

Name Metafor Code Dependency
P1 IH_P1 TM/TO
P2 IH_P2 TM/TO
P3 IH_P3 TM/TO
P4 IH_P4 TM/TO
P5 IH_P5 TM/TO

GoijaertsIsotropicHardening

Description

“Goijaerts” isotropic hardening

σvm=σel+M1(1exp(¯εvpM2))+M3¯εvp+M4¯εvp

Parameters

Name Metafor Code Dependency
M1 IH_M1 TM/TO
M2 IH_M2 TM/TO
M3 IH_M3 TM/TO
M4 IH_M4 TM/TO

KocksMeckingIsotropicHardening

Description

“Kocks-Mecking” isotropic hardening

σy=σ0y+Θ0β[1exp(βˉεvp)]siˉεvp<ˉεvptr

σy=σtry+ΘIV(ˉεvpˉεvptr)siˉεvp>ˉεvptr

where the transition yield stress between stages 3 and 4 is defined as

σtry=σ0y+Θ0ΘIVβ

and the corresponding yield strain as

ˉεvptr=1βln(Θ0ΘIV)

Parameters

Name Metafor Code Dependency
σ0 IH_SIGEL TM/TO
β KM_BETA TM/TO
Θ0 KM_THETA0 TM/TO
ΘIV KM_THETA4 TM/TO
doc/user/elements/volumes/isohard.1529397945.txt.gz · Last modified: 2018/06/19 10:45 by cerquaglia

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki