doc:user:elements:volumes:iso_hypo_materials
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
doc:user:elements:volumes:iso_hypo_materials [2016/09/07 13:04] – [KelvinVoigtViscoElastHypoMaterial] papeleux | doc:user:elements:volumes:iso_hypo_materials [2022/07/14 12:41] (current) – papeleux | ||
---|---|---|---|
Line 17: | Line 17: | ||
| Young' | | Young' | ||
| Poisson Ratio | '' | | Poisson Ratio | '' | ||
+ | | Material Stiffness | ||
| Objectivity Method \\ (Jaumann = 0, GreenNaghdi = 1) | '' | | Objectivity Method \\ (Jaumann = 0, GreenNaghdi = 1) | '' | ||
| Orthotropic axis | | Orthotropic axis | ||
Line 37: | Line 38: | ||
| Young' | | Young' | ||
| Poisson ratio | '' | | Poisson ratio | '' | ||
+ | | Material Stiffness | ||
| Objectivity method \\ (Jaumann = 0, GreenNaghdi = 1) | | Objectivity method \\ (Jaumann = 0, GreenNaghdi = 1) | ||
| Orthotropic axis | '' | | Orthotropic axis | '' | ||
Line 78: | Line 80: | ||
| Young' | | Young' | ||
| Poisson Ratio | | Poisson Ratio | ||
+ | | Material Stiffness | ||
| Viscosity coefficient | | Viscosity coefficient | ||
Line 105: | Line 108: | ||
\begin{cases} | \begin{cases} | ||
p^{1} &= p^{0} + 3K {\Delta\epsilon}_{ii} \\ | p^{1} &= p^{0} + 3K {\Delta\epsilon}_{ii} \\ | ||
- | \underline{s}_{E}^{1} | ||
\underline{s}^{1} | \underline{s}^{1} | ||
\end{cases} | \end{cases} | ||
$$ | $$ | ||
+ | Stresses in each branch are computed using : | ||
$$ | $$ | ||
\begin{cases} | \begin{cases} | ||
- | \underline{s}^{1}_{M1} &= e^{(\frac{-\Delta t}{\tau_{1}})} \underline{s}^{0}_{M1} + \Gamma_{1} (1-e^{\frac{-\Delta t}{\tau_{1}}}) \frac{\tau_{1}}{\Delta t} 2G {\Delta\underline{\epsilon}} \\ | + | \underline{s}_{E}^{1} |
- | \underline{s}^{1}_{M2} &= e^{(\frac{-\Delta t}{\tau_{2}})} \underline{s}^{0}_{M2} + \Gamma_{2} (1-e^{\frac{-\Delta t}{\tau_{2}}}) \frac{\tau_{2}}{\Delta t} 2G {\Delta\underline{\epsilon}} \\ | + | \underline{s}^{1}_{M1} &= e^{(\frac{-\Delta t}{\tau_{1}})} \underline{s}^{0}_{M1} + \Gamma_{1} (1-e^{\frac{-\Delta t}{\tau_{1}}}) \frac{\tau_{1}}{\Delta t} 2G {\Delta\hat{\underline{\epsilon}}} \\ |
+ | \underline{s}^{1}_{M2} &= e^{(\frac{-\Delta t}{\tau_{2}})} \underline{s}^{0}_{M2} + \Gamma_{2} (1-e^{\frac{-\Delta t}{\tau_{2}}}) \frac{\tau_{2}}{\Delta t} 2G {\Delta\hat{\underline{\epsilon}}} \\ | ||
\end{cases} | \end{cases} | ||
$$ | $$ | ||
Line 128: | Line 131: | ||
| Young' | | Young' | ||
| Poisson Ratio | | Poisson Ratio | ||
+ | | Material Stiffness | ||
| Number of Maxwell branches 1 (default) or 2 | | Number of Maxwell branches 1 (default) or 2 | ||
| Maxwel 1 Stiffness | | Maxwel 1 Stiffness | ||
Line 158: | Line 162: | ||
| Young' | | Young' | ||
| Poisson Ratio | | Poisson Ratio | ||
+ | | Material Stiffness | ||
| Thermal Expansion | | Thermal Expansion | ||
| Number of the material law which defines the yield stress σyield | | Number of the material law which defines the yield stress σyield | ||
Line 203: | Line 208: | ||
| Young' | | Young' | ||
| Poisson Ratio | '' | | Poisson Ratio | '' | ||
+ | | Material Stiffness | ||
| Thermal expansion | | Thermal expansion | ||
| Number of the material law which defines the yield stress σyield | | Number of the material law which defines the yield stress σyield | ||
Line 236: | Line 242: | ||
| Young' | | Young' | ||
| Poisson Ratio | '' | | Poisson Ratio | '' | ||
+ | | Material Stiffness | ||
| Thermal expansion | | Thermal expansion | ||
| Number of the material law which defines the yield stress σyield | | Number of the material law which defines the yield stress σyield | ||
Line 269: | Line 276: | ||
| Young' | | Young' | ||
| Poisson Ratio | '' | | Poisson Ratio | '' | ||
+ | | Material Stiffness | ||
| Thermal Expansion | | Thermal Expansion | ||
| Number of the material law which defines the yield stress σyield | | Number of the material law which defines the yield stress σyield | ||
Line 308: | Line 316: | ||
| Young' | | Young' | ||
| Poisson Ratio | '' | | Poisson Ratio | '' | ||
+ | | Material Stiffness | ||
| Number of the material law which defines the yield stress σyield | '' | | Number of the material law which defines the yield stress σyield | '' | ||
| Number of the damage evolution law | '' | | Number of the damage evolution law | '' | ||
Line 350: | Line 359: | ||
$$ | $$ | ||
- | f=\dfrac{\overline{\sigma}}{1-D}-\sigma_{yield}=0 | + | f=\dfrac{\overline{\sigma}}{1-h\cdot |
$$ | $$ | ||
- | where ¯σ is the equivalent stress computed as a function of [[doc: | + | where ¯σ is the equivalent stress computed as a function of [[doc: |
+ | $$ | ||
+ | h = \left\{ | ||
+ | | ||
+ | \text{DAMAGE_MCCE} & | ||
+ | 1.0 & | ||
+ | | ||
+ | | ||
+ | $$ | ||
The evolution law coupled with plasticity can be integrated three ways depending on the parameter '' | The evolution law coupled with plasticity can be integrated three ways depending on the parameter '' | ||
Line 367: | Line 384: | ||
| Young' | | Young' | ||
| Poisson Ratio | | Poisson Ratio | ||
+ | | Material Stiffness | ||
| Number of the material law which defines the yield stress σyield | '' | | Number of the material law which defines the yield stress σyield | '' | ||
| Number of the damage evolution law | '' | | Number of the damage evolution law | '' | ||
| Initial damage | | Initial damage | ||
| Integration method | | Integration method | ||
+ | | Micro-Crack Closure Effect parameter (=1.0 by default) | ||
===== ContinuousAnisoDamageEvpIsoHHypoMaterial ===== | ===== ContinuousAnisoDamageEvpIsoHHypoMaterial ===== | ||
Line 401: | Line 420: | ||
| Young' | | Young' | ||
| Poisson Ratio | | Poisson Ratio | ||
+ | | Material Stiffness | ||
| Number of the material law which defines the yield stress σyield | | Number of the material law which defines the yield stress σyield | ||
| Number of the damage evolution law | '' | | Number of the damage evolution law | '' | ||
Line 427: | Line 447: | ||
| Young' | | Young' | ||
| Poisson Ratio | | Poisson Ratio | ||
+ | | Material Stiffness | ||
| Number of the material law which defines the yield stress σyield | | Number of the material law which defines the yield stress σyield | ||
| Number of the damage evolution law | '' | | Number of the damage evolution law | '' |
doc/user/elements/volumes/iso_hypo_materials.1473246296.txt.gz · Last modified: 2016/09/07 13:04 by papeleux