Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:iso_hypo_materials

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
doc:user:elements:volumes:iso_hypo_materials [2015/07/14 16:14] – [GeneralizedMaxwellViscoElastHypoMaterial] papeleuxdoc:user:elements:volumes:iso_hypo_materials [2022/07/14 11:04] papeleux
Line 17: Line 17:
 | Young's modulus                                    |  ''ELASTIC_MODULUS''  |              | | Young's modulus                                    |  ''ELASTIC_MODULUS''  |              |
 | Poisson Ratio                                      |   ''POISSON_RATIO''                | | Poisson Ratio                                      |   ''POISSON_RATIO''                |
 +| Material Stiffness (0 : Ana - 1 : Num)             | ''MATERIALSTIFFMETHOD''  |      -       |
 +|     (only if element Stiffness == STIFF_ANALYTIC)  |                                  |
 | Objectivity Method \\ (Jaumann = 0, GreenNaghdi = 1) |    ''OBJECTIVITY''    |      -       | | Objectivity Method \\ (Jaumann = 0, GreenNaghdi = 1) |    ''OBJECTIVITY''    |      -       |
 | Orthotropic axis                                      ''ORTHO_AX1_X''    |      -       | | Orthotropic axis                                      ''ORTHO_AX1_X''    |      -       |
Line 64: Line 66:
 \begin{cases} \begin{cases}
 p^{1}  = p^{0} + 3K {\Delta\epsilon}_{ii} \\ p^{1}  = p^{0} + 3K {\Delta\epsilon}_{ii} \\
-s^{1}_{ij}  = s^{0}_{ij} + 2G {\Delta\epsilon}_{ij} + \eta \frac{{\Delta\epsilon}_{ij}}{\Delta t}+s^{1}_{ij}  = s^{0}_{ij} + 2G {\Delta\hat{\epsilon}}_{ij} + \eta \frac{{\Delta\hat{\epsilon}}_{ij}}{\Delta t}
 \end{cases} \end{cases}
 $$ $$
Line 86: Line 88:
  
 The GeneralizedMaxwell viscoelastic model result in adding of up to now, maximum 2 visco-elastic Maxwell branches to the elastic material. The similar spring/damper model is shown at the figure below The GeneralizedMaxwell viscoelastic model result in adding of up to now, maximum 2 visco-elastic Maxwell branches to the elastic material. The similar spring/damper model is shown at the figure below
-{{ :doc:user:elements:volumes:generalizedmaxwell.png?200 |}}+{{ :doc:user:elements:volumes:generalizedmaxwell.png?400 |}}
  
 Defining Maxwell viscous parameters from materials data (for each Maxwell branch):  Defining Maxwell viscous parameters from materials data (for each Maxwell branch): 
Line 105: Line 107:
 \begin{cases} \begin{cases}
 p^{1}      &= p^{0} + 3K {\Delta\epsilon}_{ii} \\ p^{1}      &= p^{0} + 3K {\Delta\epsilon}_{ii} \\
-\underline{s}^{1}  &= s^{0}_{ij+ 2G {\Delta\underline{\epsilon}} +\underline{s}^{1}_{M1} + \underline{s}^{1}_{M2}+\underline{s}^{1}  &\underline{s}_{E}^{1} + \underline{s}^{1}_{M1} + \underline{s}^{1}_{M2}
 \end{cases} \end{cases}
 $$ $$
 +Stresses in each branch are computed using : 
 $$ $$
 \begin{cases} \begin{cases}
-\underline{s}^{1}_{M1} &= e^{(\frac{-\Delta t}{\tau_{1}})} \underline{s}^{0}_{M1} + \Gamma_{1} (1-e^{\frac{-\Delta t}{\tau_{1}}}) \frac{\tau_{1}}{\Delta t} 2G {\Delta\underline{\epsilon}} \\ +\underline{s}_{E}^{1}  &= \underline{s}_{E}^{0} + 2G {\Delta\hat{\underline{\epsilon}}} \\ 
-\underline{s}^{1}_{M2} &= e^{(\frac{-\Delta t}{\tau_{2}})} \underline{s}^{0}_{M2} + \Gamma_{2} (1-e^{\frac{-\Delta t}{\tau_{2}}}) \frac{\tau_{2}}{\Delta t} 2G {\Delta\underline{\epsilon}} \\+\underline{s}^{1}_{M1} &= e^{(\frac{-\Delta t}{\tau_{1}})} \underline{s}^{0}_{M1} + \Gamma_{1} (1-e^{\frac{-\Delta t}{\tau_{1}}}) \frac{\tau_{1}}{\Delta t} 2G {\Delta\hat{\underline{\epsilon}}} \\ 
 +\underline{s}^{1}_{M2} &= e^{(\frac{-\Delta t}{\tau_{2}})} \underline{s}^{0}_{M2} + \Gamma_{2} (1-e^{\frac{-\Delta t}{\tau_{2}}}) \frac{\tau_{2}}{\Delta t} 2G {\Delta\hat{\underline{\epsilon}}} \\
 \end{cases} \end{cases}
 $$ $$
Line 133: Line 136:
 | Maxwel 2 Viscosity                                |   ''VISCO_ETA2''      |      -       | | Maxwel 2 Viscosity                                |   ''VISCO_ETA2''      |      -       |
  
-model implemented based on +model implemented based on {{:doc:user:references:materials:1997_formulation_and_implementation_of_three-dimensional_viscoelasticity_at_small_and_finite_strains_kaliske_rothert.pdf|Kaliske M, 
-"Kaliske & Rothert +Rothert H. Formulation and implementation of three-dimensional viscoelasticity at small and finite strainsComputational Mechanics 1997;19:228-239.}}
-Formulation and Implementation of three-dimensional viscoelasticity at small and finite strains +
-Computational mechanics 19(1997228-239"+
 ===== EvpIsoHHypoMaterial ===== ===== EvpIsoHHypoMaterial =====
  
Line 351: Line 352:
  
 $$ $$
-f=\dfrac{\overline{\sigma}}{1-D}-\sigma_{yield}=0+f=\dfrac{\overline{\sigma}}{1-h\cdot D}-\sigma_{yield}=0
 $$ $$
  
-where $ \overline{\sigma} $ is the equivalent stress computed as a function of [[doc:user:elements:volumes:plasticity_criterion#vonmisesplasticcriterion|Von Mises plasticy criterion]], $ \sigma_{yield} $ is the yield stress, $ D $ is the damage variable updated as a function of the [[doc:user:elements:volumes:continuousdamage|damage evolution law]].+where $ \overline{\sigma} $ is the equivalent stress computed as a function of [[doc:user:elements:volumes:plasticity_criterion#vonmisesplasticcriterion|Von Mises plasticy criterion]], $ \sigma_{yield} $ is the yield stress, $ D $ is the damage variable updated as a function of the [[doc:user:elements:volumes:continuousdamage|damage evolution law]]. Moreover, $h$ is the Micro-Crack Closure Effect parameter that makes the distinction of the weakening effect of damage under compressive and tensile stress states, which is defined as: 
 +$$ 
 + h = \left\{ 
 + \begin{array}{ll} 
 +  \text{DAMAGE_MCCE} &\mbox{, if } \dfrac{p}{J_2}< 0.0\\ 
 +  1.0 &\mbox{, if } \dfrac{p}{J_2}\geq 0.0\\ 
 + \end{array} 
 + \right. 
 +$$
  
 The evolution law coupled with plasticity can be integrated three ways depending on the parameter ''TYPE_INTEG'': The evolution law coupled with plasticity can be integrated three ways depending on the parameter ''TYPE_INTEG'':
Line 372: Line 381:
 | Initial damage                             ''DAMAGE_INIT''        -     | | Initial damage                             ''DAMAGE_INIT''        -     |
 | Integration method                             ''TYPE_INTEG''      |    -     | | Integration method                             ''TYPE_INTEG''      |    -     |
 +| Micro-Crack Closure Effect parameter (=1.0 by default)      ''DAMAGE_MCCE''     | |
  
 ===== ContinuousAnisoDamageEvpIsoHHypoMaterial ===== ===== ContinuousAnisoDamageEvpIsoHHypoMaterial =====
doc/user/elements/volumes/iso_hypo_materials.txt · Last modified: 2022/07/14 12:41 by papeleux

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki