Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_vol_potential

This is an old revision of the document!


Volumic Potentials

The VolumicPotential material law regroups all the functions $\mathcal{F}(J)$ such that the volumetric part of the strain-energy density function $W_{vol}$ can be expressed as $$ W_{vol} = k_0\mathcal{f}(J) $$ with the compression modulus $k_0$ defined on the material level.

QuadraticVolumicPotential

Description

Quadratic volumetric strain density (default for FunctionBasedHyperMaterial) $$ \mathcal{f}(J) = \frac{1}{2}\left(J-1\right)^2 $$

Parameters

No parameters required

LogarithmicVolumicPotential

Description

Logarithmic volumetric strain density $$ \mathcal{f}(J) = \frac{1}{2}\left(\text{ln}J\right)^2 $$

Parameters

No parameters required

QuadLogVolumicPotential

Description

Quadratic-Logarithmic volumetric strain density (same as NeoHookeanHyperMaterial and MooneyRivlinHyperMaterial) $$ \mathcal{f}(J) = \frac{1}{2}\left(J-1\right)^2 + \frac{1}{2}\left(\text{ln}J\right)^2 $$

Parameters

No parameters required

HartmannNeffVolumicPotential

Description

Parameters

No parameters required

doc/user/elements/volumes/hyper_vol_potential.1763115296.txt.gz · Last modified: by vanhulle

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki