Table of Contents
Volumic Potentials
The VolumicPotential material law regroups all the functions $\mathcal{f}(J)$ such that the volumetric part of the strain-energy density function $W_{vol}$ can be expressed as
$$
W_{vol} = k_0\mathcal{f}(J)
$$
with the compression modulus $k_0$ defined on the material level.
QuadraticVolumicPotential
Description
Quadratic volumetric strain density (default for FunctionBasedHyperMaterial)
$$
\mathcal{f}(J) = \frac{1}{2}\left(J-1\right)^2
$$
Parameters
No parameters required
LogarithmicVolumicPotential
Description
Logarithmic volumetric strain density $$ \mathcal{f}(J) = \frac{1}{2}\left(\text{ln}J\right)^2 $$
Parameters
No parameters required
QuadLogVolumicPotential
Description
Quadratic-Logarithmic volumetric strain density (same as NeoHookeanHyperMaterial and MooneyRivlinHyperMaterial)
$$
\mathcal{f}(J) = \frac{1}{2}\left(J-1\right)^2 + \frac{1}{2}\left(\text{ln}J\right)^2
$$
Parameters
No parameters required
HartmannNeffVolumicPotential
Description
Volumetric strain density from Hartmann S.,Neff P., 2003 Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility, Int. J. Solids Struct., 40, 2767–2791. $$ \mathcal{f}(J) = \frac{1}{50}\left(J^5+J^{-5}-2\right) $$
Parameters
No parameters required
MieheVolumicPotential
Description
Volumetric strain density from Miehe C., 1994, Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. Numer. Meth. Engng., 37, 1981–2004. $$ \mathcal{f}(J) = J - \text{ln}J -1 $$
Parameters
No parameters required
SimoTaylorVolumicPotential
Description
Volumetric strain density from Simo J., Taylor R., 1991, Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Eng., 85, 273–310. $$ \mathcal{f}(J) = \frac{1}{4}\left( J^2 - 2\text{ln}J - 1 \right) $$
Parameters
No parameters required
OgdenVolumicPotential
Description
Volumetric strain density from Ogden R. W., 1972, Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond., 326, 565–584. $$ \mathcal{f}(J) = \frac{1}{\beta^2}\left( \beta\text{ln}J + J^{-\beta} - 1 \right) $$ where $\beta$ is an experimentally determined material parameter.
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Ogden beta parameter ($\beta$) | HYPER_OGDEN_BETA | TO/TM |
