Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_materials

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
doc:user:elements:volumes:hyper_materials [2013/07/11 15:10] jorisdoc:user:elements:volumes:hyper_materials [2024/04/12 14:55] radermecker
Line 1: Line 1:
 +====== Hyperelastic materials ======
 +
 +===== NeoHookeanHyperMaterial =====
 +
 +=== Description ===
 +
 +Neo-Hookean hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
 +
 +(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e.  $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
 +
 +$$
 + W\left(I_1,I_2,J\right)  =  \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right]
 +$$
 +
 +
 +
 +$$
 +U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right]
 +$$
 +
 +=== Parameters ===
 +^   Name                                                  ^  Metafor Code  ^
 +| Density                                                 |''MASS_DENSITY''|
 +| NeoHookean coefficient ($C_1$)                          | ''RUBBER_C1'' 
 +| Initial bulk modulus ($k_0$)                            |''RUBBER_PENAL''
 +
 +===== NeoHookeanHyperMaterial =====
 +
 +=== Description ===
 +
 +Mooney-Rivlin hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
 +
 +(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e.  $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
 +
 +$$
 + W\left(I_1,I_2,J\right)  =  \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + C_2\left(\bar{I_2} - 3\right)+ \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right]
 +$$
 +
 +
 +
 +$$
 +U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right]
 +$$
 +
 +=== Parameters ===
 +^   Name                                                  ^  Metafor Code  ^
 +| Density                                                 |''MASS_DENSITY''|
 +| Mooney-Rivlin coefficient ($C_1$)                          | ''RUBBER_C1'' 
 +| Mooney-Rivlin coefficient ($C_2$)                          | ''RUBBER_C2'' 
 +| Initial bulk modulus ($k_0$)                            |''RUBBER_PENAL''
 +
 +
 +===== NeoHookeanHyperPk2Material =====
 +
 +=== Description ===
 +
 +Neo-Hookean hyperelastic law, using a ''PK2'' tensor.
 +
 +The potential per unit volume is computed based on the average compressibility over the element, ($\theta$): 
 +
 +$$
 +U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2
 +$$
 +
 +The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:
 +
 +$$
 +U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right]
 +$$
 +
 +=== Parameters ===
 +
 +^   Name                                                  ^     Metafor Code   ^
 +| Density                                                  ''MASS_DENSITY''  |
 +| Initial bulk modulus ($k_0$)                            |    ''HYPER_K0''    |
 +| Initial shear modulus ($g_0$)                              ''HYPER_G0''    |
 +
 +===== LogarihtmicHyperPk2Material =====
 +
 +=== Description ===
 +
 +Logarithmic hyperelastic law, using a ''PK2'' tensor.
 +
 +The potential per unit volume is computed based on the average compressibility of the element, ($q$): 
 +
 +$$
 +U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2
 +$$
 +
 +The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:
 +
 +$$
 +U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}\right):\ln \left(\hat{\mathbf{C}}\right)
 +$$
 +
 +=== Parameters ===
 +
 +^   Name                                                 Metafor Code     ^
 +| Density                                                  ''MASS_DENSITY''  |
 +| Initial bulk modulus ($k_0$)  |    ''HYPER_K0''    |
 +| Initial shear modulus ($g_0$)        ''HYPER_G0''    | 
 +
 +===== EvpIsoHLogarithmicHyperPk2Material =====
 +
 +=== Description ===
 +Logarithmic hyperelastic law, using a ''PK2'' tensor.
 +
 +The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): 
 +
 +$$
 +U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2
 +$$
 +
 +The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:
 +
 +$$
 +U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}^{el}\right):\ln \left(\hat{\mathbf{C}}^{el}\right)
 +$$
 +
 +=== Parameters ===
 +
 +^   Name                                                                         Metafor Code      Dependency ^
 +| Density                                                                    |  ''MASS_DENSITY''  |    -     |
 +| Initial bulk modulus ($k_0$)                                                  ''HYPER_K0''    |    -     |
 +| Initial shear modulus ($g_0$)                                              |    ''HYPER_G0''    |    -     
 +| Number of the material law which defines the yield stress $\sigma_{yield}$ |    ''YIELD_NUM''      -     |
 +
 +===== FunctionBasedHyperPk2Material =====
 +
 +=== Description ===
 +
 +Hyperelastic law, using a ''PK2'' tensor. Its function applied on the strain spectral decomposition is a user law.
 +
 +The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): 
 +
 +$$
 +U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2
 +$$
 +
 +The deviatoric potential is computed based on a hyperelastic user function defined in [[doc:user:elements:volumes:hyper_viscoelastic]].
 +
 +=== Parameters ===
 +
 +^   Name                                                  ^     Metafor Code      Dependency ^
 +| Density                                                  ''MASS_DENSITY''              -     |
 +| Initial bulk modulus ($k_0$)                            |    ''HYPER_K0''                -     |
 +| Number of the hyperelastic law                          |    ''HYPER_FUNCTION_NO''    |    -     
 +
 +
 +===== VeIsoHyperPk2Material =====
 +
 +=== Description ===
 +
 +Viscoelastic hyperelastic law, using a ''PK2'' tensor. The law includes a main branch (spring and dashpot in parallel) and one or several Maxwell branches (spring and dashpot in series).
 +
 +Each branch has its behavior corresponding to a viscoelastic law, supplied by the user.
 +
 +The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): 
 +
 +$$
 +U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2
 +$$
 +
 +The deviatoric potential is computed based on the viscoelastic laws :
 +
 +$$
 +U^{dev}= U^{dev}_{\text{main,elastic}}\left(\hat{C}\right) + \sum_{Maxwell} U^{dev}_{\text{Maxwell,elastic}}\left(\hat{C}^{\text{el}}\right)
 +$$
 +
 +The dissipation potential is written as:
 +
 +$$
 +\Delta t \phi^{dev}= \Delta t \phi^{dev}_{\text{main,viscous}}\left( \exp{\frac{\ln{\Delta\hat{C}}}{\Delta t}}   \right) + \sum_{Maxwell} \Delta t \phi^{dev}_{\text{Maxwell,viscous}}\left(\exp{\frac{\ln{\Delta C^{\text{vis}}}}{\Delta t}}   \right)
 +$$
 +
 +where
 +$$
 +\Delta\hat{C} = {\hat{F}^n}^{-T} \hat{C}^{n+1} {\hat{F}^n}^{-1}
 +$$
 +
 +$$
 +\Delta C^{\text{vis}} = {{F^{\text{vis}}}^n}^{-T} {C^{\text{vis}}}^{n+1} {{F^{\text{vis}}}^n}^{-1}
 +$$
 +
 +The potentials $ U^{dev}_{\text{main,elastic}},~~U^{dev}_{\text{Maxwell,elastic}},~~\phi^{dev}_{\text{main,viscous}},~~\phi^{dev}_{\text{Maxwell,viscous}} $ are hyperelastic functions defined in [[doc:user:elements:volumes:hyper_viscoelastic]].
 +
 +=== Parameters ===
 +
 +^   Name                                                 Metafor Code      Dependency ^
 +| Density                                                    ''MASS_DENSITY''            -     |
 +| Initial bulk modulus ($k_0$)  |    ''HYPER_K0''                -     |
 +| Number of the main viscoelastic law              |    ''MAIN_FUNCTION_NO''        -     
 +| Number of the first Maxwell viscoelastic law      |    ''MAXWELL_FUNCTION_NO1'' |    -     |
 +| Number of the second Maxwell viscoelastic law (optional)    |    ''MAXWELL_FUNCTION_NO2'' |    -     |
 +| Number of the third Maxwell viscoelastic law (optional)    |    ''MAXWELL_FUNCTION_NOI'' |    -     |
  
doc/user/elements/volumes/hyper_materials.txt · Last modified: 2024/04/12 14:55 by radermecker

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki