Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_materials

This is an old revision of the document!


Hyperelastic materials

NeoHookeanHyperMaterial

Description

Neo-Hookean hyperelastic law, using a Cauchy stress tensor σ, stress in the current configuration.

(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. ˉF=J1/3F. Hence the deviatoric potential is based on reduced invariants of ˉb=ˉFˉFT.

W(I1,I2,J)=ˉW(¯I1,¯I2)+Kf(J)=C1(¯I13)+k02[(J1)2+ln2J]

Udev=g02[tr(ˆC)3]

Parameters

Name Metafor Code
Density MASS_DENSITY
NeoHookean coefficient (C1) RUBBER_C1
Initial bulk modulus (k0) RUBBER_PENAL

NeoHookeanHyperMaterial

Description

Mooney-Rivlin hyperelastic law, using a Cauchy stress tensor σ, stress in the current configuration.

(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. ˉF=J1/3F. Hence the deviatoric potential is based on reduced invariants of ˉb=ˉFˉFT.

W(I1,I2,J)=ˉW(¯I1,¯I2)+Kf(J)=C1(¯I13)+C2(¯I23)+k02[(J1)2+ln2J]

Udev=g02[tr(ˆC)3]

Parameters

Name Metafor Code
Density MASS_DENSITY
Mooney-Rivlin coefficient (C1) RUBBER_C1
Mooney-Rivlin coefficient (C2) RUBBER_C2
Initial bulk modulus (k0) RUBBER_PENAL

NeoHookeanHyperPk2Material

Description

Neo-Hookean hyperelastic law, using a PK2 tensor.

The potential per unit volume is computed based on the average compressibility over the element, (θ):

Uvol=k02[ln(θ)]2

The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:

Udev=g02[tr(ˆC)3]

Parameters

Name Metafor Code
Density MASS_DENSITY
Initial bulk modulus (k0) HYPER_K0
Initial shear modulus (g0) HYPER_G0

LogarihtmicHyperPk2Material

Description

Logarithmic hyperelastic law, using a PK2 tensor.

The potential per unit volume is computed based on the average compressibility of the element, (q):

Uvol=k02[ln(θ)]2

The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:

Udev=g04ln(ˆC):ln(ˆC)

Parameters

Name Metafor Code
Density MASS_DENSITY
Initial bulk modulus (k0) HYPER_K0
Initial shear modulus (g0) HYPER_G0

EvpIsoHLogarithmicHyperPk2Material

Description

Logarithmic hyperelastic law, using a PK2 tensor.

The potential per unit volume is computed based on the average compressibility of the element, (θ):

Uvol=k02[ln(θ)]2

The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:

Udev=g04ln(ˆCel):ln(ˆCel)

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY -
Initial bulk modulus (k0) HYPER_K0 -
Initial shear modulus (g0) HYPER_G0 -
Number of the material law which defines the yield stress σyield YIELD_NUM -

FunctionBasedHyperPk2Material

Description

Hyperelastic law, using a PK2 tensor. Its function applied on the strain spectral decomposition is a user law.

The potential per unit volume is computed based on the average compressibility of the element, (θ):

Uvol=k02[ln(θ)]2

The deviatoric potential is computed based on a hyperelastic user function defined in Viscoelastic laws.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY -
Initial bulk modulus (k0) HYPER_K0 -
Number of the hyperelastic law HYPER_FUNCTION_NO -

VeIsoHyperPk2Material

Description

Viscoelastic hyperelastic law, using a PK2 tensor. The law includes a main branch (spring and dashpot in parallel) and one or several Maxwell branches (spring and dashpot in series).

Each branch has its behavior corresponding to a viscoelastic law, supplied by the user.

The potential per unit volume is computed based on the average compressibility of the element, (θ):

Uvol=k02[ln(θ)]2

The deviatoric potential is computed based on the viscoelastic laws :

Udev=Udevmain,elastic(ˆC)+MaxwellUdevMaxwell,elastic(ˆCel)

The dissipation potential is written as:

Δtϕdev=Δtϕdevmain,viscous(explnΔˆCΔt)+MaxwellΔtϕdevMaxwell,viscous(explnΔCvisΔt)

where ΔˆC=ˆFnTˆCn+1ˆFn1

ΔCvis=FvisnTCvisn+1Fvisn1

The potentials Udevmain,elastic,  UdevMaxwell,elastic,  ϕdevmain,viscous,  ϕdevMaxwell,viscous are hyperelastic functions defined in Viscoelastic laws.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY -
Initial bulk modulus (k0) HYPER_K0 -
Number of the main viscoelastic law MAIN_FUNCTION_NO -
Number of the first Maxwell viscoelastic law MAXWELL_FUNCTION_NO1 -
Number of the second Maxwell viscoelastic law (optional) MAXWELL_FUNCTION_NO2 -
Number of the third Maxwell viscoelastic law (optional) MAXWELL_FUNCTION_NOI -
doc/user/elements/volumes/hyper_materials.1712926510.txt.gz · Last modified: by radermecker

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki