This is an old revision of the document!
Table of Contents
Deviatoric Potentials
This section contains all material laws which allow to define the deviatoric part of the strain-energy density function $W_{dev}$
Isotropic Elastic Potentials
The ElasticPotential material law regroups elastic isotropic deviatoric strain-energy density functions as
$$
W_{dev} = W^e_{dev}\left(\bar{I}_1, \bar{I}_2, \bar{I}_3\right) = W^e_{dev}\left(\bar{I}_1, \bar{I}_2, J\right)
$$
Reminders
$$ \bar{I}_1 = \text{tr}\bar{\mathbf{B}} = \text{tr}\bar{\mathbf{C}} = \bar{\mathbf{F}}:\bar{\mathbf{F}} = J^{-\frac{2}{3}}I_1 $$ $$ \bar{I}_2 = \frac{1}{2}\left[ \left(\text{tr}\bar{\mathbf{B}}\right)^2 - \text{tr}\bar{\mathbf{B}}^2 \right] = \frac{1}{2}\left[ \left(\text{tr}\bar{\mathbf{C}}\right)^2 - \text{tr}\bar{\mathbf{C}}^2 \right] = J^{-\frac{4}{3}}I_2 $$ $$ \bar{I}_3 = \text{det}\bar{\mathbf{B}} = \text{det}\bar{\mathbf{C}} = 1 $$
NeoHookeanHyperPotential
Description
The deviatoric part of the isotropic Neo-Hookean hyperelastic law writes $$ W^e_{\text{NH},~dev} \left(\bar{I}_1\right) = \frac{\mu}{2}\left(\bar{I}_1 - 3\right) = \frac{G}{2}\left(\bar{I}_1 - 3\right) = C_1\left(\bar{I}_1 - 3\right) $$ where $\mu$ (or $G$) is the shear modulus and $C_1$ is the equivalent Neo-Hookean parameter.
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Neo-Hookean coefficient ($C_1$) | HYPER_C1 | TO/TM |
MooneyRivlinHyperPotential
Description
The deviatoric part of the isotropic Mooney-Rivlin hyperelastic law writes $$ W^e_{\text{MR},~dev} \left(\bar{I}_1, \bar{I}_2\right) = \frac{\mu_1}{2}\left(\bar{I}_1 - 3\right) + \frac{\mu_2}{2}\left(\bar{I}_2 - 3\right) = C_1\left(\bar{I}_1 - 3\right) + C_2\left(\bar{I}_2 - 3\right) $$ where $C_1$ and $C_2$ are Mooney-Rivlin coefficients.
The equivalent shear modulus $G$ writes $$ G = \mu_1 + \mu_2 = 2\left(C_1+C_2\right) $$
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Mooney-Rivlin coefficient ($C_1$) | HYPER_C1 | TO/TM |
| Mooney-Rivlin coefficient ($C_2$) | HYPER_C2 | TO/TM |
YeohHyperPotential
Description
The deviatoric part of the isotropic Yeoh hyperelastic law writes $$ W^e_{\text{MR},~dev} \left(\bar{I}_1\right) = C_1\left(\bar{I}_1 - 3\right) + C_2\left(\bar{I}_1 - 3\right)^2 + C_3\left(\bar{I}_1 - 3\right)^3 $$ where $C_1$, $C_2$ and $C_3$ are Yeoh coefficients.
The equivalent shear modulus $G$ writes $$ G = 2 \left[ C_1+2C_2\left(\bar{I}_1-3\right)+3C_3\left(\bar{I}_1-3\right)^2\right] $$
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Yeoh coefficient ($C_1$) | HYPER_C1 | TO/TM |
| Yeoh coefficient ($C_2$) | HYPER_C2 | TO/TM |
| Yeoh coefficient ($C_3$) | HYPER_C3 | TO/TM |
Anisotropic Elastic Potentials
The AnisoElasticPotential material law regroups elastic anisotropic contibutions to the deviatoric part of the strain-energy density function in a set of $n$ principal directions as
$$
W_{dev} = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, \bar{I}_2, \bar{I}_3, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, \bar{I}_2, J, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right)
$$
Reminders
$$
\mathbf{M}^{(i)} = \mathbf{a}_0^{(i)} \otimes \mathbf{a}_0^{(i)}
$$
$\mathbf{a}_0^{(i)} = \left[a_x^{(i)}, a_y^{(i)}, a_z^{(i)}\right]_0$ is the $i^{th}$ principal direction in the reference ($t_0$) material frame ().
$$
\bar{\mathbf{N}}^{(i)} = \bar{\mathbf{F}}\mathbf{M}^{(i)}\bar{\mathbf{F}}^T
$$
$$
\bar{I}_4^{(i)} = \text{tr}\left(\bar{\mathbf{C}}\mathbf{M}^{(i)}\right) = \text{tr}\left(\bar{\mathbf{B}}\bar{\mathbf{N}}^{(i)}\right) = \left(\bar{\mathbf{F}}\mathbf{a}_0^{(i)}\right):\left(\bar{\mathbf{F}}\mathbf{a}_0^{(i)}\right) = J^{-\frac{2}{3}}I_4^{(i)}
$$
$$
\bar{I}_5^{(i)} = \text{tr}\left(\bar{\mathbf{C}}^2\mathbf{M}^{(i)}\right) = \text{tr}\left(\bar{\mathbf{B}}^2\bar{\mathbf{N}}^{(i)}\right) = J^{-\frac{4}{3}}I_5^{(i)}
$$
HolzapfelGasserOgdenHyperPotential
Description
The deviatoric part of the anisotropic Holzapfel-Gasser-Ogden hyperelastic law for the $i^{th}$ direction writes $$ W_{\text{HGO},~dev}^{(i)}\left(\bar{I}_1, \bar{I}_4^{(i)} \right) = \frac{k_1}{2k_2}\left[ e^{k_2\left< d\left(\bar{I}_1-3\right) + \left(1-3d\right)\left(\bar{I}_4^{(i)}-1\right)\right>^2}-1 \right] = \frac{k_1}{2k_2}\left[ e^{k_2\left<E^{(i)}\right>^2}-1 \right] $$ where $k_1$ and $k_2$ are material parameters characterizing the fibers and $d\in\left[0, \frac{1}{3}\right]$ is a parameter accounting for fiber dispersion.
Remarks
- $d=0$ corresponds to perfectly aligned fibers whilst $d=\frac{1}{3}$ corresponds to randomly aligned fibers (isotropic response)
- $W_{dev}$ only affects the traction behavior of the material as $W_{dev}=0$ when $E^{(i)}=0$ (Macauley brackets)
$$ \begin{split} \left<E^{(i)} \right> = \left\{\begin{array}{ll} E^{(i)} & \text{if } E^{(i)} \geq 0 \\ 0 & \text{if } E_\alpha < 0 \end{array} \right. \end{split} $$
Mathematical derivations, such as the analytical tangent stiffness matrix, can be found in this presentation.
Parameters
| Name | Metafor Code | Dependency |
|---|---|---|
| Holzapfel-Gasser-Ogden coefficient ($k_1$) | HYPER_HGO_K1 | TO/TM |
| Holzapfel-Gasser-Ogden coefficient ($k_2$) | HYPER_HGO_K2 | TO/TM |
| Fiber dispersion fraction ($d$) | HYPER_HGO_DISP | TO/TM |
