Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_dev_potential

Deviatoric Potentials

This section contains all material laws which allow to define the deviatoric part of the strain-energy density function $W_{dev}$

Isotropic Elastic Potentials

The ElasticPotential material law regroups elastic isotropic deviatoric strain-energy density functions as $$ W_{dev} = W^e_{dev}\left(\bar{I}_1, \bar{I}_2, \bar{I}_3\right) = W^e_{dev}\left(\bar{I}_1, \bar{I}_2, J\right) $$

Reminders

$$ \bar{I}_1 = \text{tr}\bar{\mathbf{B}} = \text{tr}\bar{\mathbf{C}} = \bar{\mathbf{F}}:\bar{\mathbf{F}} = J^{-\frac{2}{3}}I_1 $$ $$ \bar{I}_2 = \frac{1}{2}\left[ \left(\text{tr}\bar{\mathbf{B}}\right)^2 - \text{tr}\bar{\mathbf{B}}^2 \right] = \frac{1}{2}\left[ \left(\text{tr}\bar{\mathbf{C}}\right)^2 - \text{tr}\bar{\mathbf{C}}^2 \right] = J^{-\frac{4}{3}}I_2 $$ $$ \bar{I}_3 = \text{det}\bar{\mathbf{B}} = \text{det}\bar{\mathbf{C}} = 1 $$

NeoHookeanHyperPotential

Description

The deviatoric part of the isotropic Neo-Hookean hyperelastic law writes $$ W^e_{\text{NH},~dev} \left(\bar{I}_1\right) = \frac{\mu}{2}\left(\bar{I}_1 - 3\right) = \frac{G}{2}\left(\bar{I}_1 - 3\right) = C_1\left(\bar{I}_1 - 3\right) $$ where $\mu$ (or $G$) is the shear modulus and $C_1$ is the equivalent Neo-Hookean parameter.

Parameters

Name Metafor Code Dependency
Neo-Hookean coefficient ($C_1$) HYPER_C1 TO/TM

MooneyRivlinHyperPotential

Description

The deviatoric part of the isotropic Mooney-Rivlin hyperelastic law writes $$ W^e_{\text{MR},~dev} \left(\bar{I}_1, \bar{I}_2\right) = \frac{\mu_1}{2}\left(\bar{I}_1 - 3\right) + \frac{\mu_2}{2}\left(\bar{I}_2 - 3\right) = C_1\left(\bar{I}_1 - 3\right) + C_2\left(\bar{I}_2 - 3\right) $$ where $C_1$ and $C_2$ are Mooney-Rivlin coefficients.

The equivalent shear modulus $G$ writes $$ G = \mu_1 + \mu_2 = 2\left(C_1+C_2\right) $$

Parameters

Name Metafor Code Dependency
Mooney-Rivlin coefficient ($C_1$) HYPER_C1 TO/TM
Mooney-Rivlin coefficient ($C_2$) HYPER_C2 TO/TM

YeohHyperPotential

Description

The deviatoric part of the isotropic Yeoh hyperelastic law writes $$ W^e_{\text{MR},~dev} \left(\bar{I}_1\right) = C_1\left(\bar{I}_1 - 3\right) + C_2\left(\bar{I}_1 - 3\right)^2 + C_3\left(\bar{I}_1 - 3\right)^3 $$ where $C_1$, $C_2$ and $C_3$ are Yeoh coefficients.

The equivalent shear modulus $G$ writes $$ G = 2 \left[ C_1+2C_2\left(\bar{I}_1-3\right)+3C_3\left(\bar{I}_1-3\right)^2\right] $$

Parameters

Name Metafor Code Dependency
Yeoh coefficient ($C_1$) HYPER_C1 TO/TM
Yeoh coefficient ($C_2$) HYPER_C2 TO/TM
Yeoh coefficient ($C_3$) HYPER_C3 TO/TM

Anisotropic Elastic Potentials

The AnisoElasticPotential material law regroups elastic anisotropic contibutions to the deviatoric part of the strain-energy density function in a set of $n$ principal directions as $$ W_{dev} = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, \bar{I}_2, \bar{I}_3, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, \bar{I}_2, J, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) $$ At the moment, a maximum of 3 separate principal directions can be given to the material law.

Reminders

$$ \mathbf{M}^{(i)} = \mathbf{a}_0^{(i)} \otimes \mathbf{a}_0^{(i)} $$ $\mathbf{a}_0^{(i)} = \left[a_x^{(i)}, a_y^{(i)}, a_z^{(i)}\right]_0$ is the $i^{th}$ principal direction in the reference ($t_0$) material frame (:!:). $$ \bar{\mathbf{N}}^{(i)} = \bar{\mathbf{F}}\mathbf{M}^{(i)}\bar{\mathbf{F}}^T $$ $$ \bar{I}_4^{(i)} = \text{tr}\left(\bar{\mathbf{C}}\mathbf{M}^{(i)}\right) = \text{tr}\left(\bar{\mathbf{B}}\bar{\mathbf{N}}^{(i)}\right) = \left(\bar{\mathbf{F}}\mathbf{a}_0^{(i)}\right):\left(\bar{\mathbf{F}}\mathbf{a}_0^{(i)}\right) = J^{-\frac{2}{3}}I_4^{(i)} $$ $$ \bar{I}_5^{(i)} = \text{tr}\left(\bar{\mathbf{C}}^2\mathbf{M}^{(i)}\right) = \text{tr}\left(\bar{\mathbf{B}}^2\bar{\mathbf{N}}^{(i)}\right) = J^{-\frac{4}{3}}I_5^{(i)} $$

HolzapfelGasserOgdenHyperPotential

Description

The deviatoric part of the anisotropic Holzapfel-Gasser-Ogden hyperelastic law for the $i^{th}$ direction writes $$ W_{\text{HGO},~dev}^{(i)}\left(\bar{I}_1, \bar{I}_4^{(i)} \right) = \frac{k_1}{2k_2}\left[ e^{k_2\left< d\left(\bar{I}_1-3\right) + \left(1-3d\right)\left(\bar{I}_4^{(i)}-1\right)\right>^2}-1 \right] = \frac{k_1}{2k_2}\left[ e^{k_2\left<E^{(i)}\right>^2}-1 \right] $$ where $k_1$ and $k_2$ are material parameters characterizing the fibers and $d\in\left[0, \frac{1}{3}\right]$ is a parameter accounting for fiber dispersion.

Remarks

  • $d=0$ corresponds to perfectly aligned fibers whilst $d=\frac{1}{3}$ corresponds to randomly aligned fibers (isotropic response)
  • $W_{dev}$ only affects the traction behavior of the material as $W_{dev}=0$ when $E^{(i)}=0$ (Macauley brackets)

$$ \begin{split} \left<E^{(i)} \right> = \left\{\begin{array}{ll} E^{(i)} & \text{if } E^{(i)} \geq 0 \\ 0 & \text{if } E_\alpha < 0 \end{array} \right. \end{split} $$

Mathematical derivations, such as the analytical tangent stiffness matrix, can be found in this presentation.

Parameters

Name Metafor Code Dependency
Holzapfel-Gasser-Ogden coefficient ($k_1$) HYPER_HGO_K1 TO/TM
Holzapfel-Gasser-Ogden coefficient ($k_2$) HYPER_HGO_K2 TO/TM
Fiber dispersion fraction ($d$) HYPER_HGO_DISP TO/TM
Direction of the first principal (fiber) direction ($a^1_x$) HYPER_FIB1_X -
Direction of the first principal (fiber) direction ($a^1_y$) HYPER_FIB1_Y -
Direction of the first principal (fiber) direction ($a^1_z$) HYPER_FIB1_Z -
Direction of the second principal (fiber) direction ($a^2_x$) HYPER_FIB2_X -
Direction of the second principal (fiber) direction ($a^2_y$) HYPER_FIB2_Y -
Direction of the second principal (fiber) direction ($a^2_z$) HYPER_FIB2_Z -
Direction of the third principal (fiber) direction ($a^3_x$) HYPER_FIB3_X -
Direction of the third principal (fiber) direction ($a^3_y$) HYPER_FIB3_Y -
Direction of the third principal (fiber) direction ($a^3_z$) HYPER_FIB3_Z -

BonetBurtonHyperPotential

Description

The deviatoric part of the anisotropic Bonet-Burton hyperelastic law for the $i^{th}$ direction writes $$ W_{\text{BB},~dev}^{(i)}\left(\bar{I}_1, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) = \left[\alpha + \beta \left( \bar{I}_1-3 \right) + \gamma \left( \bar{I}^{(i)}_4 -1\right)\right]\left(\bar{I}^{(i)}_4 - 1\right) - \frac{1}{2}\alpha \left(\bar{I}^{(i)}_5 -1\right) $$ where $\alpha$, $\beta$ and $\gamma$ are material parameters which are related to the engineering material constants from the fibers and matrix (see Bonet-Burton material example). This model is actually directly derived from small-strain orthotropic (transversely isotropic) elasticity.

Remarks

Alternatively, another implementation of this material law is available where the hyperlastic law writes $$ W_{\text{BB}}^{(i)}\left(J, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) = \left[\alpha + \beta~\text{ln}J + \gamma \left( \bar{I}^{(i)}_4 -1\right)\right]\left(\bar{I}^{(i)}_4 - 1\right) - \frac{1}{2}\alpha \left(\bar{I}^{(i)}_5 -1\right) $$ by using the parameter HYPER_BB_USE_LNJ=true.

Note that in this case, $W_{\text{BB}}^{(i)}$ is not purely deviatoric since there is a coupling between $J$ and $\bar{I}_4^{(i)}$. Therefore, this formulation also contributes to the volumetric part of the deformation gradient.

Mathematical derivations, such as the analytical tangent stiffness matrix, and information regarding the second form of the hyperelastic law can be found in this presentation.

Parameters

Name Metafor Code Dependency
Bonet-Burton coefficient ($\alpha$) HYPER_BB_ALPHA TO/TM
Bonet-Burton coefficient ($\beta$) HYPER_BB_BETA TO/TM
Bonet-Burton coefficient ($\gamma$) HYPER_BB_GAMMA TO/TM
Use the alternative Bonet-Burton law with $\beta~\text{ln}J$
boolean: true (default)
HYPER_BB_USE_LNJ TO/TM
Direction of the first principal (fiber) direction ($a^1_x$) HYPER_FIB1_X -
Direction of the first principal (fiber) direction ($a^1_y$) HYPER_FIB1_Y -
Direction of the first principal (fiber) direction ($a^1_z$) HYPER_FIB1_Z -
Direction of the second principal (fiber) direction ($a^2_x$) HYPER_FIB2_X -
Direction of the second principal (fiber) direction ($a^2_y$) HYPER_FIB2_Y -
Direction of the second principal (fiber) direction ($a^2_z$) HYPER_FIB2_Z -
Direction of the third principal (fiber) direction ($a^3_x$) HYPER_FIB3_X -
Direction of the third principal (fiber) direction ($a^3_y$) HYPER_FIB3_Y -
Direction of the third principal (fiber) direction ($a^3_z$) HYPER_FIB3_Z -

Rheological Laws

Under construction Other laws will follow with the addition of visco-elasticity.

CombinedElasticPotential

Description

The CombinedElasticPotential material law allows to combine two deviatoric hyperelastic potentials together as $$ \boldsymbol{\sigma}^e = \boldsymbol{\sigma}^e_1 + \boldsymbol{\sigma}^e_2 $$ This can be illustrated using the following analogous rheological element

The main purpose of this element is to create anisotropic hyperelastic materials, as they are often composed of an isotropic (generally a Neo-Hookean) matrix component and an anisotropic fibrous component (see anisotropic material examples). Nonetheless, this material law can also be used to add two or more deviatoric potentials, since CombinedElasticPotential can combine with itself.

doc/user/elements/volumes/hyper_dev_potential.txt · Last modified: by vanhulle

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki