doc:user:elements:volumes:hyper_dev_potential
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| doc:user:elements:volumes:hyper_dev_potential [2025/11/14 14:56] – [HolzapfelGasserOgdenHyperPotential] vanhulle | doc:user:elements:volumes:hyper_dev_potential [2026/01/15 14:12] (current) – [MaxwellBranch] vanhulle | ||
|---|---|---|---|
| Line 78: | Line 78: | ||
| W_{dev} = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, | W_{dev} = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, | ||
| $$ | $$ | ||
| + | |||
| + | |||
| + | The principal directions are defined using spherical coordinates and the (radius-)**longitude-lattitude convention**, | ||
| + | |||
| + | {{ : | ||
| + | |||
| + | Note that if only one of $\theta$ or $\delta$ is specified, the other one is considered 0$^\circ$. | ||
| === Reminders === | === Reminders === | ||
| Line 121: | Line 128: | ||
| | Holzapfel-Gasser-Ogden coefficient ($k_1$) | | Holzapfel-Gasser-Ogden coefficient ($k_1$) | ||
| | Holzapfel-Gasser-Ogden coefficient ($k_2$) | | Holzapfel-Gasser-Ogden coefficient ($k_2$) | ||
| - | | Fiber dispersion | + | | Fiber dispersion |
| + | | Array of $\theta$ angles defining the principal directions [$\theta_1$, | ||
| + | | Array of $\theta$ angles defining the principal directions [$\delta_1$, | ||
| Line 130: | Line 139: | ||
| W_{\text{BB}, | W_{\text{BB}, | ||
| $$ | $$ | ||
| - | or alternatively, | + | where $\alpha$, $\beta$ and $\gamma$ are material parameters which are related to the engineering material constants from the fibers and matrix (see [[doc: |
| + | |||
| + | === Remarks === | ||
| + | Alternatively, | ||
| $$ | $$ | ||
| - | W_{\text{BB},~dev}^{(i)}\left(J, | + | W_{\text{BB}}^{(i)}\left(J, |
| $$ | $$ | ||
| - | where $\alpha$, $\beta$ and $\gamma$ are material parameters which are related | + | by using the parameter '' |
| + | |||
| + | Note that in this case, $W_{\text{BB}}^{(i)}$ is not purely deviatoric since there is a coupling between | ||
| + | |||
| + | Mathematical derivations, | ||
| + | |||
| + | === Parameters === | ||
| + | ^ | ||
| + | | Bonet-Burton | ||
| + | | Bonet-Burton coefficient ($\beta$) | ||
| + | | Bonet-Burton coefficient ($\gamma$) | ||
| + | | Use the alternative Bonet-Burton law with $\beta~\text{ln}J$ \\ boolean: '' | ||
| + | | Array of $\theta$ angles defining the principal directions [$\theta_1$, | ||
| + | | Array of $\theta$ angles defining the principal directions [$\delta_1$, | ||
| + | |||
| + | |||
| + | ====== Visco-elastic Potentials ====== | ||
| + | |||
| + | |||
| + | ===== GeneralizedMaxwellHyperPotential ===== | ||
| + | |||
| + | === Description === | ||
| + | In the rheological analogy, the generalized Maxwell visco-elastic model consists in a **main elastic potential** (main spring) put in parallel with several **Maxwell branches**, which are made of a spring and a damper in series. Each Maxwell branch must be defined using the **MaxwellBranch material law**. | ||
| + | |||
| + | {{ : | ||
| + | |||
| + | The Cauchy stress in the current configuration writes | ||
| + | $$ | ||
| + | \boldsymbol{\sigma}^{n+1} = \boldsymbol{\sigma}^{n+1}_0+ \sum_{j=1}^N \mathbf{h}_j^{n+1}, | ||
| + | $$ | ||
| + | where $\boldsymbol{\sigma}_0$ is the stress in the main elastic branch and $\mathbf{h}_j$ is the non-equilibrium stress from Maxwell branch $j$. | ||
| + | |||
| + | The non-equilibrium stress in the current configuration in a Maxwell branch writes (trapezoidal integration) | ||
| + | $$ | ||
| + | \begin{align*} | ||
| + | \mathbf{h}_j^{n+1} | ||
| + | \approx e^{-\frac{\Delta t}{\tau_j}} \frac{1}{\Delta J} \Delta F ~\mathbf{h}_j^{n}(\Delta F)^T + \Gamma_j \frac{1 - e^{-\frac{\Delta t}{\tau_j}}}{\frac{\Delta t}{\tau_j}}\left[ \boldsymbol{\sigma}^{n+1}_0 - \frac{1}{\Delta J} \Delta F ~~\boldsymbol{\sigma}^{n}_0(\Delta F)^T\right] | ||
| + | \end{align*} | ||
| + | $$ | ||
| + | where $\Delta \mathbf{F} = \mathbf{F}^{n+1}\left(\mathbf{F}^{n}\right)^{-1}$ and $\Delta J = \text{det}\left(\Delta \mathbf{F}\right)$. | ||
| + | |||
| + | === Parameters (GeneralizedMaxwellHyperPotential) === | ||
| + | ^ | ||
| + | | Number of the main elastic potential $\sigma_0$ | ||
| + | | Array of numbers defining the Maxwell branches [1, 2, ...] | '' | ||
| + | |||
| + | === Parameters (MaxwellBranch) === | ||
| + | ^ | ||
| + | | Normalized Maxwell stiffness $\Gamma$ | ||
| + | | Relaxation time $\tau$ | ||
| + | | Boolean parameter, use trapezoidal integration (=False, default) or mid-point rule (=True) | ||
| - | Mathematical derivations, | ||
doc/user/elements/volumes/hyper_dev_potential.1763128582.txt.gz · Last modified: by vanhulle
