doc:user:elements:volumes:hyper_dev_potential
Differences
This shows you the differences between two versions of the page.
| Next revision | Previous revision | ||
| doc:user:elements:volumes:hyper_dev_potential [2025/11/14 12:17] – created vanhulle | doc:user:elements:volumes:hyper_dev_potential [2025/11/14 15:33] (current) – [Anisotropic Elastic Potentials] vanhulle | ||
|---|---|---|---|
| Line 71: | Line 71: | ||
| | Yeoh coefficient ($C_2$) | | Yeoh coefficient ($C_2$) | ||
| | Yeoh coefficient ($C_3$) | | Yeoh coefficient ($C_3$) | ||
| + | |||
| + | |||
| + | ====== Anisotropic Elastic Potentials ====== | ||
| + | The '' | ||
| + | $$ | ||
| + | W_{dev} = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, | ||
| + | $$ | ||
| + | At the moment, a maximum of 3 separate principal directions can be given to the material law. | ||
| + | |||
| + | === Reminders === | ||
| + | $$ | ||
| + | \mathbf{M}^{(i)} = \mathbf{a}_0^{(i)} \otimes \mathbf{a}_0^{(i)} | ||
| + | $$ | ||
| + | $\mathbf{a}_0^{(i)} = \left[a_x^{(i)}, | ||
| + | $$ | ||
| + | \bar{\mathbf{N}}^{(i)} = \bar{\mathbf{F}}\mathbf{M}^{(i)}\bar{\mathbf{F}}^T | ||
| + | $$ | ||
| + | $$ | ||
| + | \bar{I}_4^{(i)} = \text{tr}\left(\bar{\mathbf{C}}\mathbf{M}^{(i)}\right) = \text{tr}\left(\bar{\mathbf{B}}\bar{\mathbf{N}}^{(i)}\right) = \left(\bar{\mathbf{F}}\mathbf{a}_0^{(i)}\right): | ||
| + | $$ | ||
| + | $$ | ||
| + | \bar{I}_5^{(i)} = \text{tr}\left(\bar{\mathbf{C}}^2\mathbf{M}^{(i)}\right) = \text{tr}\left(\bar{\mathbf{B}}^2\bar{\mathbf{N}}^{(i)}\right) = J^{-\frac{4}{3}}I_5^{(i)} | ||
| + | $$ | ||
| + | |||
| + | |||
| + | ===== HolzapfelGasserOgdenHyperPotential ===== | ||
| + | === Description === | ||
| + | The deviatoric part of the anisotropic Holzapfel-Gasser-Ogden hyperelastic law for the $i^{th}$ direction writes | ||
| + | $$ | ||
| + | W_{\text{HGO}, | ||
| + | $$ | ||
| + | where $k_1$ and $k_2$ are material parameters characterizing the fibers and $d\in\left[0, | ||
| + | |||
| + | === Remarks === | ||
| + | * $d=0$ corresponds to perfectly aligned fibers whilst $d=\frac{1}{3}$ corresponds to randomly aligned fibers (isotropic response) | ||
| + | * $W_{dev}$ only affects the traction behavior of the material as $W_{dev}=0$ when $E^{(i)}=0$ (Macauley brackets) | ||
| + | $$ | ||
| + | \begin{split} \left< | ||
| + | \left\{\begin{array}{ll} | ||
| + | E^{(i)} & \text{if } E^{(i)} \geq 0 \\ | ||
| + | 0 & \text{if } E_\alpha < 0 | ||
| + | \end{array} \right. | ||
| + | \end{split} | ||
| + | $$ | ||
| + | |||
| + | Mathematical derivations, | ||
| + | |||
| + | === Parameters === | ||
| + | ^ | ||
| + | | Holzapfel-Gasser-Ogden coefficient ($k_1$) | ||
| + | | Holzapfel-Gasser-Ogden coefficient ($k_2$) | ||
| + | | Fiber dispersion fraction ($d$) | '' | ||
| + | | Direction of the first principal (fiber) direction ($a^1_x$) | '' | ||
| + | | Direction of the first principal (fiber) direction ($a^1_y$) | '' | ||
| + | | Direction of the first principal (fiber) direction ($a^1_z$) | '' | ||
| + | | Direction of the second principal (fiber) direction ($a^2_x$) | '' | ||
| + | | Direction of the second principal (fiber) direction ($a^2_y$) | '' | ||
| + | | Direction of the second principal (fiber) direction ($a^2_z$) | '' | ||
| + | | Direction of the third principal (fiber) direction ($a^3_x$) | '' | ||
| + | | Direction of the third principal (fiber) direction ($a^3_y$) | '' | ||
| + | | Direction of the third principal (fiber) direction ($a^3_z$) | '' | ||
| + | |||
| + | |||
| + | ===== BonetBurtonHyperPotential ===== | ||
| + | === Description === | ||
| + | The deviatoric part of the anisotropic Bonet-Burton hyperelastic law for the $i^{th}$ direction writes | ||
| + | $$ | ||
| + | W_{\text{BB}, | ||
| + | $$ | ||
| + | where $\alpha$, $\beta$ and $\gamma$ are material parameters which are related to the engineering material constants from the fibers and matrix (see [[doc: | ||
| + | |||
| + | === Remarks === | ||
| + | Alternatively, | ||
| + | $$ | ||
| + | W_{\text{BB}}^{(i)}\left(J, | ||
| + | $$ | ||
| + | by using the parameter '' | ||
| + | |||
| + | Note that in this case, $W_{\text{BB}}^{(i)}$ is not purely deviatoric since there is a coupling between $J$ and $\bar{I}_4^{(i)}$. Therefore, this formulation also contributes to the volumetric part of the deformation gradient. | ||
| + | |||
| + | Mathematical derivations, | ||
| + | |||
| + | === Parameters === | ||
| + | ^ | ||
| + | | Bonet-Burton coefficient ($\alpha$) | ||
| + | | Bonet-Burton coefficient ($\beta$) | ||
| + | | Bonet-Burton coefficient ($\gamma$) | ||
| + | | Use the alternative Bonet-Burton law with $\beta~\text{ln}J$ \\ boolean: '' | ||
| + | | Direction of the first principal (fiber) direction ($a^1_x$) | '' | ||
| + | | Direction of the first principal (fiber) direction ($a^1_y$) | '' | ||
| + | | Direction of the first principal (fiber) direction ($a^1_z$) | '' | ||
| + | | Direction of the second principal (fiber) direction ($a^2_x$) | '' | ||
| + | | Direction of the second principal (fiber) direction ($a^2_y$) | '' | ||
| + | | Direction of the second principal (fiber) direction ($a^2_z$) | '' | ||
| + | | Direction of the third principal (fiber) direction ($a^3_x$) | '' | ||
| + | | Direction of the third principal (fiber) direction ($a^3_y$) | '' | ||
| + | | Direction of the third principal (fiber) direction ($a^3_z$) | '' | ||
| + | |||
| + | |||
| + | ====== Rheological Laws ====== | ||
| + | {{: | ||
| + | |||
| + | ===== CombinedElasticPotential ===== | ||
| + | === Description === | ||
| + | The '' | ||
| + | $$ | ||
| + | \boldsymbol{\sigma}^e = \boldsymbol{\sigma}^e_1 + \boldsymbol{\sigma}^e_2 | ||
| + | $$ | ||
| + | This can be illustrated using the following analogous rheological element | ||
| + | {{ : | ||
| + | |||
| + | The main purpose of this element is to create anisotropic hyperelastic materials, as they are often composed of an isotropic (generally a Neo-Hookean) matrix component and an anisotropic fibrous component (see [[doc: | ||
| + | |||
doc/user/elements/volumes/hyper_dev_potential.1763119066.txt.gz · Last modified: by vanhulle
