doc:user:elements:volumes:continuousdamage
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| doc:user:elements:volumes:continuousdamage [2014/06/30 12:23] – boman | doc:user:elements:volumes:continuousdamage [2021/04/09 11:35] (current) – [LinGeersContinuousDamage] tanaka | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | ====== | + | ====== |
| - | + | ||
| - | La classe '' | + | |
| - | + | ||
| - | Lois implémentées dans Metafor | + | |
| + | The '' | ||
| + | Laws implemented in Metafor | ||
| ===== LemaitreChabocheContinuousDamage ===== | ===== LemaitreChabocheContinuousDamage ===== | ||
| Line 12: | Line 9: | ||
| === Description === | === Description === | ||
| + | Lemaitre & Chaboche damage model [[doc: | ||
| $$ | $$ | ||
| - | \dot D = \left(\dfrac{\bar \sigma^2 R_\nu}{2ES\left(1-D\right)^2}\right)^s \dot \varepsilon^{pl} \mbox{ | + | \dot D = \left(\dfrac{\bar \sigma^2 R_\nu}{2ES\left(1-D\right)^2}\right)^s \dot \varepsilon^{pl} \mbox{, if } \varepsilon^{pl} > \varepsilon^{pl}_D |
| $$ | $$ | ||
| - | où la fonction de triaxialité est définie par: | + | where the triaxiliaty function is defined as: |
| $$ | $$ | ||
| Line 22: | Line 20: | ||
| $$ | $$ | ||
| - | avec $ E $ le module de Young du matériau, $ \nu $ le coefficient du matériau, $ p $ la pression et $ \bar \sigma $ est la contrainte équivalente de Von-Mises. | + | where $ p $ is the pressure, $ \bar \sigma $ is Von Mises stress and $\eta$ is the stress triaxiality ratio. |
| - | === Paramètres | + | === Parameters |
| - | ^ | + | ^ Name |
| - | | Module de Young $ E $ | '' | + | | Young Modulus |
| - | | Coefficient de Poisson $\nu$ | + | | Poisson |
| - | | Exposant | + | | Exponent |
| | Coefficient $ S $ | '' | | Coefficient $ S $ | '' | ||
| - | | Déformation plastique seuil $ \varepsilon^{pl}_D $ | '' | + | | Plastic strain threshold |
| + | | Triaxiality threshold $ \eta_D $ | '' | ||
| + | ===== BoneRemodContinousDamage ===== | ||
| + | This law is designed for bone remodeling (extracted from Doblaré' | ||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | ===== BoneRemodContinousDamage ===== | ||
| - | |||
| - | Il s'agit d'une loi d' | ||
| === Description === | === Description === | ||
| Line 59: | Line 41: | ||
| $$ | $$ | ||
| - | où | + | where |
| - | $S_v(d)$ | + | $S_v(d)$ |
| - | et où | + | and where |
| $$ | $$ | ||
| \begin{align*} | \begin{align*} | ||
| - | \dot r &= \ cf_1(d, \rho_0)g_f& | + | \dot r &= \ cf_1(d, \rho_0)g_f& |
| - | \dot r &= -cf_1(d, \rho_0)g_r& | + | \dot r &= -cf_1(d, \rho_0)g_r& |
| \end{align*} | \end{align*} | ||
| $$ | $$ | ||
| - | avec | + | with |
| $$ | $$ | ||
| Line 81: | Line 63: | ||
| $$ | $$ | ||
| - | $ f, f_1 $ sont fonctions de l'endo, | + | $ f, f_1 $ are functions in the damage variable, $ u $ is a measure of the elastic strain energy. |
| - | $ u $ est une mesure de l' | + | |
| - | === Paramètres | + | === Parameters |
| - | ^ | + | ^ Name |
| | Coefficient $ N $ | | Coefficient $ N $ | ||
| - | | Pourcentage de surface | + | | Percentage of available |
| - | | Energie de déformation élastique de référence | + | | Reference elastic strain energy |
| - | | Demi-largeur de la zone morte $ \omega $ | '' | + | | Half width of the dead zone $ \omega $ | '' |
| - | | Vitesse de remodelage | + | | Remodeling speed $ c $ | '' |
| - | | Densité du matériau non endommagé | + | | Density of undamaged material$ \rho_0 [kg/m^3] $ | '' |
| + | |||
| ==== AlvBoneRemodContinousDamage ==== | ==== AlvBoneRemodContinousDamage ==== | ||
| - | Il s'agit d'une loi d' | + | This law is defined for the remodeling of the alveolar bone. Damage evolution also depends on pressure. |
| === Description === | === Description === | ||
| Line 102: | Line 86: | ||
| $$ | $$ | ||
| - | où | + | where |
| - | $S_v(d)$ | + | $S_v(d)$ |
| $$ | $$ | ||
| \begin{align*} | \begin{align*} | ||
| - | \dot r &= cf_1(d, \rho_0)g_f & | + | \dot r &= cf_1(d, \rho_0)g_f & |
| - | \dot r &= -cf_1(d, \rho_0)g_f & | + | \dot r &= -cf_1(d, \rho_0)g_f & |
| - | \dot r &= -cf_1(d, \rho_0)g_r & | + | \dot r &= -cf_1(d, \rho_0)g_r & |
| \end{align*} | \end{align*} | ||
| $$ | $$ | ||
| - | avec | + | with |
| $$ | $$ | ||
| Line 123: | Line 107: | ||
| $$ | $$ | ||
| + | $ f, f_1 $ are functions in the damage variable, $ u $ is a measure of the elastic strain energy. | ||
| - | $ f, f_1 $ sont fonctions de l'endo, $ u $ est une mesure de l'énergie de défo élastique. | + | === Parameters === |
| + | ^ | ||
| + | | Coefficient | ||
| + | | Percentage of available surface | ||
| + | | Reference elastic strain energy $ \psi $ | '' | ||
| + | | Remodeling speed $ c $ | '' | ||
| + | | Density of undamaged material $\rho_0 [\mbox{kg}/ | ||
| - | === Paramètres === | ||
| - | |||
| - | ^ Nom ^ Codes Metafor | ||
| - | | Coefficient $ N $ | ||
| - | | Pourcentage de surface disponible $ k $ | ||
| - | | Energie de déformation élastique de référence $ \psi $ | '' | ||
| - | | Vitesse de remodelage $ c $ | ||
| - | | Densité du matériau non endommagé $\rho_0 [\mbox{kg}/ | ||
| ==== AlvBoneRemodContinousDamage2constant ==== | ==== AlvBoneRemodContinousDamage2constant ==== | ||
| - | idem que précédente mais constantes de remodelage différentes en formation | + | Same law than the previous one, except that remodeling constants are different in formation |
| === Description === | === Description === | ||
| Line 143: | Line 126: | ||
| $$ | $$ | ||
| \begin{align*} | \begin{align*} | ||
| - | \dot r &= c_ff_1(d, \rho_0)g_f\; | + | \dot r &= c_ff_1(d, \rho_0)g_f\; |
| - | \dot r &= -c_rf_1(d, \rho_0)g_f\; | + | \dot r &= -c_rf_1(d, \rho_0)g_f\; |
| - | \dot r &= -c_rf_1(d, \rho_0)g_r\; | + | \dot r &= -c_rf_1(d, \rho_0)g_r\; |
| \end{align*} | \end{align*} | ||
| $$ | $$ | ||
| - | avec | + | with |
| - | < | + | < |
| + | some definitions are lacking | ||
| + | </ | ||
| + | ... | ||
| - | === Paramètres | + | === Parameters |
| - | + | ^ Name | |
| - | ^ | + | |
| | Coefficient $ N $ | | Coefficient $ N $ | ||
| - | | Pourcentage de surface | + | | Percentage of available |
| - | | Energie de déformation élastique de référence | + | | Reference elastic strain energy |
| - | | Vitesse de remodelage | + | | Remodeling speed $ c_f $ | '' |
| - | | Vitesse de remodelage | + | | Remodeling speed $ c_r $ | '' |
| - | | Densité du matériau non endommagé | + | | Density of undamaged material |
| - | + | ||
| ===== LangsethContinousDamage ===== | ===== LangsethContinousDamage ===== | ||
| Line 169: | Line 153: | ||
| $$ | $$ | ||
| - | \dot D = D_C\dfrac{\dot \varepsilon^{pl}}{\varepsilon^{pl}_f-\varepsilon^{pl}_D} \mbox{ | + | \dot D = D_C\dfrac{\dot \varepsilon^{pl}}{\varepsilon^{pl}_f-\varepsilon^{pl}_D} \mbox{ |
| $$ | $$ | ||
| - | où la déformation plastique de rupture est définie par: | + | where the plastic strain at failure is defined as: |
| $$ | $$ | ||
| Line 178: | Line 162: | ||
| $$ | $$ | ||
| - | où $ p $ est la pression et $ \bar \sigma $ est la contrainte équivalente de Von-Mises. | + | where $p$ is the pressure and $ \bar \sigma $ the Von Mises stress. |
| - | === Paramètres | + | === Parameters |
| - | ^ | + | ^ Name |
| | $ D_1 $ | | $ D_1 $ | ||
| | $ D_2 $ | | $ D_2 $ | ||
| Line 188: | Line 172: | ||
| | $ D_4 $ | | $ D_4 $ | ||
| | $ D_5 $ | | $ D_5 $ | ||
| - | | Endommagement | + | | Damage |
| | $ \dot \varepsilon^{pl}_0 $ | | $ \dot \varepsilon^{pl}_0 $ | ||
| - | | Température ambiante | + | | Room temperature |
| - | | Température de fusion | + | | Melting temperature |
| - | | Defo plastique seuil $ \varepsilon^{pl}_D $ | '' | + | | Plastic strain threshold |
| - | + | ||
| - | + | ||
| - | + | ||
| ===== GeersContinuousDamage ===== | ===== GeersContinuousDamage ===== | ||
| - | Loi d' | + | Damage evolution law following |
| - | + | ||
| - | === Paramètres communs à tous les modèles === | + | |
| - | + | ||
| - | ^ Nom | + | |
| - | | Valeur de déclenchement $ \kappa_i $ | '' | + | |
| - | | Valeur critique $ \kappa_c $ | '' | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | === Parameters common to all models === | ||
| + | ^ | ||
| + | | Initiation value $ \kappa_i $ | '' | ||
| + | | Critical value $ \kappa_c $ | '' | ||
| ==== PowGeersContinuousDamage ==== | ==== PowGeersContinuousDamage ==== | ||
| - | Loi puissance. La grandeur caractéristique | + | Power law. $\kappa$ |
| $$ | $$ | ||
| - | D = 1 - \left(\dfrac{\kappa_i}{\kappa}\right)^{n_1} \left(\dfrac{\kappa-\kappa_i}{\kappa_c-\kappa_i}\right)^{n_2} \mbox{ | + | D = 1 - \left(\dfrac{\kappa_i}{\kappa}\right)^{n_1} \left(\dfrac{\kappa-\kappa_i}{\kappa_c-\kappa_i}\right)^{n_2} \mbox{ |
| $$ | $$ | ||
| - | ^ | + | ^ Name ^ |
| | $ n_1 $ | '' | | $ n_1 $ | '' | ||
| | $ n_2 $ | '' | | $ n_2 $ | '' | ||
| - | |||
| - | |||
| - | |||
| - | |||
| ==== ExpGeersContinuousDamage ==== | ==== ExpGeersContinuousDamage ==== | ||
| - | Loi exponentielle. La grandeur caractéristique | + | Exponential law. $\kappa$ |
| $$ | $$ | ||
| Line 241: | Line 211: | ||
| $$ | $$ | ||
| - | ^ | + | ^ Name ^ |
| | $ \beta $ | '' | | $ \beta $ | '' | ||
| - | |||
| Line 249: | Line 218: | ||
| ==== TanhGeersContinuousDamage ==== | ==== TanhGeersContinuousDamage ==== | ||
| - | Loi en tangente hyperbolique. La grandeur caractéristique est la déformation plastique équivalente | + | Hyperbolic tangent. $\kappa$ is the equivalent plastic strain |
| $$ | $$ | ||
| Line 255: | Line 224: | ||
| $$ | $$ | ||
| - | ^ | + | ^ Name |
| - | | Valeur de déclenchement | + | | Initiation value $ \kappa_i $ | '' |
| - | | Valeur critique | + | | Critical value $ \kappa_c $ | '' |
| Line 265: | Line 234: | ||
| ==== LinGeersContinuousDamage ==== | ==== LinGeersContinuousDamage ==== | ||
| - | Loi linéaire: La grandeur caractéristique est une fonction de la triaxialité des contraintes et de la déformation plastique équivalente | + | Law linear. $\kappa$ is a function of the stress triaxiality and the equivalent plastic strain |
| $$ | $$ | ||
| \dot{\kappa} = C\left< | \dot{\kappa} = C\left< | ||
| $$ | $$ | ||
| - | où $p$ est la pression et $ \overline{\sigma} $ est la contrainte équivalente de Von Mises. $\langle .\rangle$ | + | where $p$ is the pressure, and $ \overline{\sigma} $ the Von Mises stress. $\langle .\rangle$ |
| $$ | $$ | ||
| Line 276: | Line 245: | ||
| $$ | $$ | ||
| - | ^ | + | ^ Name |
| | $ A $ | '' | | $ A $ | '' | ||
| | $ B $ | '' | | $ B $ | '' | ||
| | $ C $ | '' | | $ C $ | '' | ||
| + | ===== References ===== | ||
| + | |||
| + | [1] Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and | ||
| + | Technology 1985; | ||
| + | |||
| + | [2] Chaboche JL. Description thermodynamique et phénoménologique de la viscoélasticité cyclique avec endommagement. | ||
| + | PhD Thesis, Université Pierre et Marie Curie, Paris VI, 1978. | ||
| + | |||
| + | [3] | ||
| + | |||
| + | [4] | ||
doc/user/elements/volumes/continuousdamage.1404123810.txt.gz · Last modified: (external edit)
