doc:user:elements:volumes:continuousdamage
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
doc:user:elements:volumes:continuousdamage [2014/06/30 12:23] – boman | doc:user:elements:volumes:continuousdamage [2021/04/09 11:35] (current) – [LinGeersContinuousDamage] tanaka | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== | + | ====== |
- | + | ||
- | La classe '' | + | |
- | + | ||
- | Lois implémentées dans Metafor | + | |
+ | The '' | ||
+ | Laws implemented in Metafor | ||
===== LemaitreChabocheContinuousDamage ===== | ===== LemaitreChabocheContinuousDamage ===== | ||
Line 12: | Line 9: | ||
=== Description === | === Description === | ||
+ | Lemaitre & Chaboche damage model [[doc: | ||
$$ | $$ | ||
- | \dot D = \left(\dfrac{\bar \sigma^2 R_\nu}{2ES\left(1-D\right)^2}\right)^s \dot \varepsilon^{pl} \mbox{ | + | \dot D = \left(\dfrac{\bar \sigma^2 R_\nu}{2ES\left(1-D\right)^2}\right)^s \dot \varepsilon^{pl} \mbox{, if } \varepsilon^{pl} > \varepsilon^{pl}_D |
$$ | $$ | ||
- | où la fonction de triaxialité est définie par: | + | where the triaxiliaty function is defined as: |
$$ | $$ | ||
Line 22: | Line 20: | ||
$$ | $$ | ||
- | avec $ E $ le module de Young du matériau, ν le coefficient du matériau, p la pression et ˉσ est la contrainte équivalente de Von-Mises. | + | where $ p $ is the pressure, ˉσ is Von Mises stress and η is the stress triaxiality ratio. |
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ Name |
- | | Module de Young E | '' | + | | Young Modulus |
- | | Coefficient de Poisson ν | + | | Poisson |
- | | Exposant | + | | Exponent |
| Coefficient S | '' | | Coefficient S | '' | ||
- | | Déformation plastique seuil εplD | '' | + | | Plastic strain threshold |
+ | | Triaxiality threshold ηD | '' | ||
+ | ===== BoneRemodContinousDamage ===== | ||
+ | This law is designed for bone remodeling (extracted from Doblaré' | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | ===== BoneRemodContinousDamage ===== | ||
- | |||
- | Il s'agit d'une loi d' | ||
=== Description === | === Description === | ||
Line 59: | Line 41: | ||
$$ | $$ | ||
- | où | + | where |
- | Sv(d) | + | Sv(d) |
- | et où | + | and where |
$$ | $$ | ||
\begin{align*} | \begin{align*} | ||
- | \dot r &= \ cf_1(d, \rho_0)g_f& | + | \dot r &= \ cf_1(d, \rho_0)g_f& |
- | \dot r &= -cf_1(d, \rho_0)g_r& | + | \dot r &= -cf_1(d, \rho_0)g_r& |
\end{align*} | \end{align*} | ||
$$ | $$ | ||
- | avec | + | with |
$$ | $$ | ||
Line 81: | Line 63: | ||
$$ | $$ | ||
- | f,f1 sont fonctions de l'endo, | + | f,f1 are functions in the damage variable, u is a measure of the elastic strain energy. |
- | u est une mesure de l' | + | |
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ Name |
| Coefficient N | | Coefficient N | ||
- | | Pourcentage de surface | + | | Percentage of available |
- | | Energie de déformation élastique de référence | + | | Reference elastic strain energy |
- | | Demi-largeur de la zone morte ω | '' | + | | Half width of the dead zone ω | '' |
- | | Vitesse de remodelage | + | | Remodeling speed c | '' |
- | | Densité du matériau non endommagé | + | | Density of undamaged materialρ0[kg/m3] | '' |
+ | |||
==== AlvBoneRemodContinousDamage ==== | ==== AlvBoneRemodContinousDamage ==== | ||
- | Il s'agit d'une loi d' | + | This law is defined for the remodeling of the alveolar bone. Damage evolution also depends on pressure. |
=== Description === | === Description === | ||
Line 102: | Line 86: | ||
$$ | $$ | ||
- | où | + | where |
- | Sv(d) | + | Sv(d) |
$$ | $$ | ||
\begin{align*} | \begin{align*} | ||
- | \dot r &= cf_1(d, \rho_0)g_f & | + | \dot r &= cf_1(d, \rho_0)g_f & |
- | \dot r &= -cf_1(d, \rho_0)g_f & | + | \dot r &= -cf_1(d, \rho_0)g_f & |
- | \dot r &= -cf_1(d, \rho_0)g_r & | + | \dot r &= -cf_1(d, \rho_0)g_r & |
\end{align*} | \end{align*} | ||
$$ | $$ | ||
- | avec | + | with |
$$ | $$ | ||
Line 123: | Line 107: | ||
$$ | $$ | ||
+ | f,f1 are functions in the damage variable, u is a measure of the elastic strain energy. | ||
- | $ f, f_1 $ sont fonctions de l'endo, $ u $ est une mesure de l'énergie de défo élastique. | + | === Parameters === |
+ | ^ | ||
+ | | Coefficient | ||
+ | | Percentage of available surface | ||
+ | | Reference elastic strain energy ψ | '' | ||
+ | | Remodeling speed c | '' | ||
+ | | Density of undamaged material ρ0[kg/m3] | '' | ||
- | === Paramètres === | ||
- | |||
- | ^ Nom ^ Codes Metafor | ||
- | | Coefficient N | ||
- | | Pourcentage de surface disponible k | ||
- | | Energie de déformation élastique de référence ψ | '' | ||
- | | Vitesse de remodelage c | ||
- | | Densité du matériau non endommagé ρ0[kg/m3] | '' | ||
==== AlvBoneRemodContinousDamage2constant ==== | ==== AlvBoneRemodContinousDamage2constant ==== | ||
- | idem que précédente mais constantes de remodelage différentes en formation | + | Same law than the previous one, except that remodeling constants are different in formation |
=== Description === | === Description === | ||
Line 143: | Line 126: | ||
$$ | $$ | ||
\begin{align*} | \begin{align*} | ||
- | \dot r &= c_ff_1(d, \rho_0)g_f\; | + | \dot r &= c_ff_1(d, \rho_0)g_f\; |
- | \dot r &= -c_rf_1(d, \rho_0)g_f\; | + | \dot r &= -c_rf_1(d, \rho_0)g_f\; |
- | \dot r &= -c_rf_1(d, \rho_0)g_r\; | + | \dot r &= -c_rf_1(d, \rho_0)g_r\; |
\end{align*} | \end{align*} | ||
$$ | $$ | ||
- | avec | + | with |
- | < | + | < |
+ | some definitions are lacking | ||
+ | </ | ||
+ | ... | ||
- | === Paramètres | + | === Parameters |
- | + | ^ Name | |
- | ^ | + | |
| Coefficient N | | Coefficient N | ||
- | | Pourcentage de surface | + | | Percentage of available |
- | | Energie de déformation élastique de référence | + | | Reference elastic strain energy |
- | | Vitesse de remodelage | + | | Remodeling speed cf | '' |
- | | Vitesse de remodelage | + | | Remodeling speed cr | '' |
- | | Densité du matériau non endommagé | + | | Density of undamaged material |
- | + | ||
===== LangsethContinousDamage ===== | ===== LangsethContinousDamage ===== | ||
Line 169: | Line 153: | ||
$$ | $$ | ||
- | \dot D = D_C\dfrac{\dot \varepsilon^{pl}}{\varepsilon^{pl}_f-\varepsilon^{pl}_D} \mbox{ | + | \dot D = D_C\dfrac{\dot \varepsilon^{pl}}{\varepsilon^{pl}_f-\varepsilon^{pl}_D} \mbox{ |
$$ | $$ | ||
- | où la déformation plastique de rupture est définie par: | + | where the plastic strain at failure is defined as: |
$$ | $$ | ||
Line 178: | Line 162: | ||
$$ | $$ | ||
- | où p est la pression et ˉσ est la contrainte équivalente de Von-Mises. | + | where p is the pressure and ˉσ the Von Mises stress. |
- | === Paramètres | + | === Parameters |
- | ^ | + | ^ Name |
| D1 | | D1 | ||
| D2 | | D2 | ||
Line 188: | Line 172: | ||
| D4 | | D4 | ||
| D5 | | D5 | ||
- | | Endommagement | + | | Damage |
| ˙εpl0 | | ˙εpl0 | ||
- | | Température ambiante | + | | Room temperature |
- | | Température de fusion | + | | Melting temperature |
- | | Defo plastique seuil εplD | '' | + | | Plastic strain threshold |
- | + | ||
- | + | ||
- | + | ||
===== GeersContinuousDamage ===== | ===== GeersContinuousDamage ===== | ||
- | Loi d' | + | Damage evolution law following |
- | + | ||
- | === Paramètres communs à tous les modèles === | + | |
- | + | ||
- | ^ Nom | + | |
- | | Valeur de déclenchement κi | '' | + | |
- | | Valeur critique κc | '' | + | |
- | + | ||
- | + | ||
- | + | ||
+ | === Parameters common to all models === | ||
+ | ^ | ||
+ | | Initiation value κi | '' | ||
+ | | Critical value κc | '' | ||
==== PowGeersContinuousDamage ==== | ==== PowGeersContinuousDamage ==== | ||
- | Loi puissance. La grandeur caractéristique | + | Power law. κ |
$$ | $$ | ||
- | D = 1 - \left(\dfrac{\kappa_i}{\kappa}\right)^{n_1} \left(\dfrac{\kappa-\kappa_i}{\kappa_c-\kappa_i}\right)^{n_2} \mbox{ | + | D = 1 - \left(\dfrac{\kappa_i}{\kappa}\right)^{n_1} \left(\dfrac{\kappa-\kappa_i}{\kappa_c-\kappa_i}\right)^{n_2} \mbox{ |
$$ | $$ | ||
- | ^ | + | ^ Name ^ |
| n1 | '' | | n1 | '' | ||
| n2 | '' | | n2 | '' | ||
- | |||
- | |||
- | |||
- | |||
==== ExpGeersContinuousDamage ==== | ==== ExpGeersContinuousDamage ==== | ||
- | Loi exponentielle. La grandeur caractéristique | + | Exponential law. κ |
$$ | $$ | ||
Line 241: | Line 211: | ||
$$ | $$ | ||
- | ^ | + | ^ Name ^ |
| β | '' | | β | '' | ||
- | |||
Line 249: | Line 218: | ||
==== TanhGeersContinuousDamage ==== | ==== TanhGeersContinuousDamage ==== | ||
- | Loi en tangente hyperbolique. La grandeur caractéristique est la déformation plastique équivalente | + | Hyperbolic tangent. κ is the equivalent plastic strain |
$$ | $$ | ||
Line 255: | Line 224: | ||
$$ | $$ | ||
- | ^ | + | ^ Name |
- | | Valeur de déclenchement | + | | Initiation value κi | '' |
- | | Valeur critique | + | | Critical value κc | '' |
Line 265: | Line 234: | ||
==== LinGeersContinuousDamage ==== | ==== LinGeersContinuousDamage ==== | ||
- | Loi linéaire: La grandeur caractéristique est une fonction de la triaxialité des contraintes et de la déformation plastique équivalente | + | Law linear. κ is a function of the stress triaxiality and the equivalent plastic strain |
$$ | $$ | ||
\dot{\kappa} = C\left< | \dot{\kappa} = C\left< | ||
$$ | $$ | ||
- | où p est la pression et ¯σ est la contrainte équivalente de Von Mises. ⟨.⟩ | + | where p is the pressure, and ¯σ the Von Mises stress. ⟨.⟩ |
$$ | $$ | ||
Line 276: | Line 245: | ||
$$ | $$ | ||
- | ^ | + | ^ Name |
| A | '' | | A | '' | ||
| B | '' | | B | '' | ||
| C | '' | | C | '' | ||
+ | ===== References ===== | ||
+ | |||
+ | [1] Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and | ||
+ | Technology 1985; | ||
+ | |||
+ | [2] Chaboche JL. Description thermodynamique et phénoménologique de la viscoélasticité cyclique avec endommagement. | ||
+ | PhD Thesis, Université Pierre et Marie Curie, Paris VI, 1978. | ||
+ | |||
+ | [3] | ||
+ | |||
+ | [4] |
doc/user/elements/volumes/continuousdamage.1404123810.txt.gz · Last modified: 2016/03/30 15:22 (external edit)