−Table of Contents
Continuous isotropic damage
The ContinousDamage
class manages all continuous damage evolution laws. When a new law is defined, the evolution of the damage variable δD must be defined, and so must be its derivatives with respect to pressure, plastic strain and damage.
Laws implemented in Metafor
LemaitreChabocheContinuousDamage
Description
Lemaitre & Chaboche damage model [1,2]. ˙D=(ˉσ2Rν2ES(1−D)2)s˙εpl, if εpl>εplD, and η>ηD
where the triaxiliaty function is defined as:
Rν=23(1+ν)+3(1−2ν)(pˉσ)2
where p is the pressure, ˉσ is Von Mises stress and η is the stress triaxiality ratio.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Young Modulus E | LEMAITRE_YOUNG | TO/TM |
Poisson Ratio ν | LEMAITRE_NU | TO/TM |
Exponent s | LEMAITRE_SMALL_S | TO/TM |
Coefficient S | LEMAITRE_BIG_S | TO/TM |
Plastic strain threshold εplD | LEMAITRE_EPL_THRESHOLD | TO/TM |
Triaxiality threshold ηD | LEMAITRE_TRIAX_THRESHOLD | TO/TM |
BoneRemodContinousDamage
This law is designed for bone remodeling (extracted from Doblaré's law, which he uses only in elasticity). Damage evolution depends mostly on damage, surface available for remodeling and a “remodelling rate” function, which depends on stress state.
Description
˙d=f(d,ρ0)kSv(d)˙r
where
Sv(d) is the surface per unit volume available for remodeling (polynomial of degree 5 in d)
and where
˙r= cf1(d,ρ0)gf if gf>0˙r=−cf1(d,ρ0)gr if gr>0 with gf=N1/4u(σ)−(1+ω)ψgr=1N1/4u(σ)−1(1−ω)ψ f,f1 are functions in the damage variable, u is a measure of the elastic strain energy.
Parameters
Name | Metafor Code |
---|---|
Coefficient N | BONE_REMOD_N |
Percentage of available surface k | BONE_REMOD_K |
Reference elastic strain energy ψ | BONE_REMOD_PSI |
Half width of the dead zone ω | BONE_REMOD_OMEGA |
Remodeling speed c | BONE_REMOD_C |
Density of undamaged materialρ0[kg/m3] | BONE_REMOD_MASS_DENSITY |
AlvBoneRemodContinousDamage
This law is defined for the remodeling of the alveolar bone. Damage evolution also depends on pressure.
Description
˙d=f(d,ρ0)kSv(d)˙r
where
Sv(d) is the surface per unit volume available for remodeling (polynomial of degree 5 in d)
˙r=cf1(d,ρ0)gf if gf>0 and p>0˙r=−cf1(d,ρ0)gf if gf>0 and p<0˙r=−cf1(d,ρ0)gr if gr>0 with gf=N1/4u(σ)−ψgr=1N1/4u(σ)−1ψ f,f1 are functions in the damage variable, u is a measure of the elastic strain energy.
Parameters
Name | Metafor Code |
---|---|
Coefficient N | BONE_REMOD_N |
Percentage of available surface k | BONE_REMOD_K |
Reference elastic strain energy ψ | BONE_REMOD_PSI |
Remodeling speed c | BONE_REMOD_C |
Density of undamaged material ρ0[kg/m3] | BONE_REMOD_MASS_DENSITY |
AlvBoneRemodContinousDamage2constant
Same law than the previous one, except that remodeling constants are different in formation and resorption.
Description
˙r=cff1(d,ρ0)gf if gf>0 and p>0˙r=−crf1(d,ρ0)gf if gf>0 and p<0˙r=−crf1(d,ρ0)gr if gr>0
with
<note>
some definitions are lacking
</note>
...
=== Parameters ===
^ Name ^ Metafor Code ^
| Coefficient N | BONE_REMOD_N
|
Percentage of available surface k | BONE_REMOD_K |
Reference elastic strain energy ψ | BONE_REMOD_PSI |
Remodeling speed cf | BONE_REMOD_CF |
Remodeling speed cr | BONE_REMOD_CR |
Density of undamaged material ρ0[kg/m3] | BONE_REMOD_MASS_DENSITY |
LangsethContinousDamage
Description
˙D=DC˙εplεplf−εplD if εpl>εplD
where the plastic strain at failure is defined as:
εplf=(D1+D2exp(D3pˉσ))(1+ln˙εpl˙εpl0)D4(1−D5T−TroomTmelt−Troom)
where p is the pressure and ˉσ the Von Mises stress.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
D1 | LANGSETH_D1 | TO/TM |
D2 | LANGSETH_D2 | TO/TM |
D3 | LANGSETH_D3 | TO/TM |
D4 | LANGSETH_D4 | TO/TM |
D5 | LANGSETH_D5 | TO/TM |
Damage DC | LANGSETH_DC | TO/TM |
˙εpl0 | LANGSETH_EPSP0 | TO/TM |
Room temperature Troom | LANGSETH_ROOM | - |
Melting temperature Tmelt | LANGSETH_TMELT | - |
Plastic strain threshold εplD | LANGSETH_EPL_THRESHOLD | - |
GeersContinuousDamage
Damage evolution law following Geers's models. Several laws actually exist, all of the same author, which is why they are gathered in a same class. If the full Geers's model, damage is integrated globally on the structure, and not locally at each integration point. I can give references if needed. All models are based on a characteristic quantity, κ.
Parameters common to all models
Name | Metafor Code | Dependency |
---|---|---|
Initiation value κi | GEERS_KAPPA_I | TO/TM |
Critical value κc | GEERS_KAPPA_C | TO/TM |
PowGeersContinuousDamage
Power law. κ is the equivalent plastic strain εpl:
D=1−(κiκ)n1(κ−κiκc−κi)n2 if κi≤κ≤κc
Name | Metafor Code | Dependency |
---|---|---|
n1 | GEERS_N1 | TO/TM |
n2 | GEERS_N2 | TO/TM |
ExpGeersContinuousDamage
Exponential law. κ is the equivalent plastic strain ˉεpl
D=1−exp(−β(κ−κi))
Name | Metafor Code | Dependency |
---|---|---|
β | GEERS_BETA | TO/TM |
TanhGeersContinuousDamage
Hyperbolic tangent. κ is the equivalent plastic strain εpl
D=12tanh(3)(tanh(6κ−κiκc−κi−3)+tanh(3))
Name | Metafor Code | Dependency |
---|---|---|
Initiation value κi | GEERS_KAPPA_I | TO/TM |
Critical value κc | GEERS_KAPPA_C | TO/TM |
LinGeersContinuousDamage
Law linear. κ is a function of the stress triaxiality and the equivalent plastic strain εpl
˙κ=C⟨1+Apˉσ⟩(εpl)B˙εpl where p is the pressure, and ¯σ the Von Mises stress. ⟨.⟩ are Macaulay symbols( ⟨α⟩=α if α≥0 and 0 otherwise)
˙D=˙κκc−κi
Name | Metafor Code | Dependency |
---|---|---|
A | GEERS_A | TO/TM |
B | GEERS_B | TO/TM |
C | GEERS_C | TO/TM |
References
[1] Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology 1985;107:9–83.
[2] Chaboche JL. Description thermodynamique et phénoménologique de la viscoélasticité cyclique avec endommagement. PhD Thesis, Université Pierre et Marie Curie, Paris VI, 1978.
[3]
[4]