Processing math: 100%

Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:continuousdamage

Continuous isotropic damage

The ContinousDamage class manages all continuous damage evolution laws. When a new law is defined, the evolution of the damage variable δD must be defined, and so must be its derivatives with respect to pressure, plastic strain and damage.

Laws implemented in Metafor

LemaitreChabocheContinuousDamage

Description

Lemaitre & Chaboche damage model [1,2]. ˙D=(ˉσ2Rν2ES(1D)2)s˙εpl, if εpl>εplD, and η>ηD

where the triaxiliaty function is defined as:

Rν=23(1+ν)+3(12ν)(pˉσ)2

where p is the pressure, ˉσ is Von Mises stress and η is the stress triaxiality ratio.

Parameters

Name Metafor Code Dependency
Young Modulus E LEMAITRE_YOUNG TO/TM
Poisson Ratio ν LEMAITRE_NU TO/TM
Exponent s LEMAITRE_SMALL_S TO/TM
Coefficient S LEMAITRE_BIG_S TO/TM
Plastic strain threshold εplD LEMAITRE_EPL_THRESHOLD TO/TM
Triaxiality threshold ηD LEMAITRE_TRIAX_THRESHOLD TO/TM

BoneRemodContinousDamage

This law is designed for bone remodeling (extracted from Doblaré's law, which he uses only in elasticity). Damage evolution depends mostly on damage, surface available for remodeling and a “remodelling rate” function, which depends on stress state.

Description

˙d=f(d,ρ0)kSv(d)˙r

where

Sv(d) is the surface per unit volume available for remodeling (polynomial of degree 5 in d)

and where

˙r= cf1(d,ρ0)gf if gf>0˙r=cf1(d,ρ0)gr if gr>0 with gf=N1/4u(σ)(1+ω)ψgr=1N1/4u(σ)1(1ω)ψ f,f1 are functions in the damage variable, u is a measure of the elastic strain energy.

Parameters

Name Metafor Code
Coefficient N BONE_REMOD_N
Percentage of available surface k BONE_REMOD_K
Reference elastic strain energy ψ BONE_REMOD_PSI
Half width of the dead zone ω BONE_REMOD_OMEGA
Remodeling speed c BONE_REMOD_C
Density of undamaged materialρ0[kg/m3] BONE_REMOD_MASS_DENSITY

AlvBoneRemodContinousDamage

This law is defined for the remodeling of the alveolar bone. Damage evolution also depends on pressure.

Description

˙d=f(d,ρ0)kSv(d)˙r

where

Sv(d) is the surface per unit volume available for remodeling (polynomial of degree 5 in d)

˙r=cf1(d,ρ0)gf if gf>0 and p>0˙r=cf1(d,ρ0)gf if gf>0 and p<0˙r=cf1(d,ρ0)gr if gr>0 with gf=N1/4u(σ)ψgr=1N1/4u(σ)1ψ f,f1 are functions in the damage variable, u is a measure of the elastic strain energy.

Parameters

Name Metafor Code
Coefficient N BONE_REMOD_N
Percentage of available surface k BONE_REMOD_K
Reference elastic strain energy ψ BONE_REMOD_PSI
Remodeling speed c BONE_REMOD_C
Density of undamaged material ρ0[kg/m3] BONE_REMOD_MASS_DENSITY

AlvBoneRemodContinousDamage2constant

Same law than the previous one, except that remodeling constants are different in formation and resorption.

Description

˙r=cff1(d,ρ0)gf if gf>0 and p>0˙r=crf1(d,ρ0)gf if gf>0 and p<0˙r=crf1(d,ρ0)gr if gr>0 with <note> some definitions are lacking </note> ... === Parameters === ^ Name ^ Metafor Code ^ | Coefficient N | BONE_REMOD_N |

Percentage of available surface k BONE_REMOD_K
Reference elastic strain energy ψ BONE_REMOD_PSI
Remodeling speed cf BONE_REMOD_CF
Remodeling speed cr BONE_REMOD_CR
Density of undamaged material ρ0[kg/m3] BONE_REMOD_MASS_DENSITY

LangsethContinousDamage

Description

˙D=DC˙εplεplfεplD if εpl>εplD

where the plastic strain at failure is defined as:

εplf=(D1+D2exp(D3pˉσ))(1+ln˙εpl˙εpl0)D4(1D5TTroomTmeltTroom)

where p is the pressure and ˉσ the Von Mises stress.

Parameters

Name Metafor Code Dependency
D1 LANGSETH_D1 TO/TM
D2 LANGSETH_D2 TO/TM
D3 LANGSETH_D3 TO/TM
D4 LANGSETH_D4 TO/TM
D5 LANGSETH_D5 TO/TM
Damage DC LANGSETH_DC TO/TM
˙εpl0 LANGSETH_EPSP0 TO/TM
Room temperature Troom LANGSETH_ROOM -
Melting temperature Tmelt LANGSETH_TMELT -
Plastic strain threshold εplD LANGSETH_EPL_THRESHOLD -

GeersContinuousDamage

Damage evolution law following Geers's models. Several laws actually exist, all of the same author, which is why they are gathered in a same class. If the full Geers's model, damage is integrated globally on the structure, and not locally at each integration point. I can give references if needed. All models are based on a characteristic quantity, κ.

Parameters common to all models

Name Metafor Code Dependency
Initiation value κi GEERS_KAPPA_I TO/TM
Critical value κc GEERS_KAPPA_C TO/TM

PowGeersContinuousDamage

Power law. κ is the equivalent plastic strain εpl:

D=1(κiκ)n1(κκiκcκi)n2 if κiκκc

Name Metafor Code Dependency
n1 GEERS_N1 TO/TM
n2 GEERS_N2 TO/TM

ExpGeersContinuousDamage

Exponential law. κ is the equivalent plastic strain ˉεpl

D=1exp(β(κκi))

Name Metafor Code Dependency
β GEERS_BETA TO/TM

TanhGeersContinuousDamage

Hyperbolic tangent. κ is the equivalent plastic strain εpl

D=12tanh(3)(tanh(6κκiκcκi3)+tanh(3))

Name Metafor Code Dependency
Initiation value κi GEERS_KAPPA_I TO/TM
Critical value κc GEERS_KAPPA_C TO/TM

LinGeersContinuousDamage

Law linear. κ is a function of the stress triaxiality and the equivalent plastic strain εpl

˙κ=C1+Apˉσ(εpl)B˙εpl where p is the pressure, and ¯σ the Von Mises stress. . are Macaulay symbols( α=α if α0 and 0 otherwise)

˙D=˙κκcκi

Name Metafor Code Dependency
A GEERS_A TO/TM
B GEERS_B TO/TM
C GEERS_C TO/TM

References

[1] Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology 1985;107:9–83.

[2] Chaboche JL. Description thermodynamique et phénoménologique de la viscoélasticité cyclique avec endommagement. PhD Thesis, Université Pierre et Marie Curie, Paris VI, 1978.

[3]

[4]

doc/user/elements/volumes/continuousdamage.txt · Last modified: 2021/04/09 11:35 by tanaka

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki