doc:user:elements:volumes:thixo_yield_stress
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| doc:user:elements:volumes:thixo_yield_stress [2013/07/11 16:54] – joris | doc:user:elements:volumes:thixo_yield_stress [2016/03/30 15:23] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ====== Yield Stress ====== | ====== Yield Stress ====== | ||
| - | La classe | + | The class '' |
| - | Qu' | + | |
| $$ | $$ | ||
| Line 8: | Line 8: | ||
| $$ | $$ | ||
| - | Lois implémentées dans Metafor. | + | The laws implemented in Metafor |
| ===== BurgosViscoYieldStress | ===== BurgosViscoYieldStress | ||
| - | Partie visqueuse de la contrainte limite plastique spécifique aux matériaux thixo. Ce modèle dépend de deux paramètres internes spécifiques aux matériaux thixo: le [[doc: | + | Viscous term of the yield stress specific to thixotropic materials. It depends on two internal parameters, the [[doc: |
| $$ | $$ | ||
| Line 21: | Line 20: | ||
| === Description === | === Description === | ||
| - | La loi visqueuse est une loi de Perzyna | + | This viscous law is a Perzyna |
| - | avec : | + | where |
| $$ | $$ | ||
| \sigma_{visq}= K \left (\dot{\overline{\varepsilon}}^{vp}\right )^{M} | \sigma_{visq}= K \left (\dot{\overline{\varepsilon}}^{vp}\right )^{M} | ||
| $$ | $$ | ||
| - | |||
| - | où | ||
| $$ | $$ | ||
| K = K_1 e^{K_2(1-f_l)} e^{K_3 \lambda} | K = K_1 e^{K_2(1-f_l)} e^{K_3 \lambda} | ||
| $$ | $$ | ||
| - | |||
| - | et | ||
| $$ | $$ | ||
| M = (M_1 + M_3 \lambda^2 + M_4 \lambda ) e^{M_2 (1-f_l)} | M = (M_1 + M_3 \lambda^2 + M_4 \lambda ) e^{M_2 (1-f_l)} | ||
| $$ | $$ | ||
| - | === Paramètres === | ||
| - | ^ Nom | + | === Parameters === |
| - | |Numéro de la loi d' | + | ^ Name ^ |
| - | |Numéro de la loi d' | + | |Number of the hardening law | '' |
| - | |Valeur initiale du degré de cohésion | + | |Number of the cohesion degree evolution law | '' |
| - | |Numéro de la loi d' | + | |Initial cohesion degree |
| - | |Numéro de la loi d' | + | |Number of the liquid |
| + | |Number of the effective liquid | ||
| |$K_1 $ | '' | |$K_1 $ | '' | ||
| |$K_2 $ | '' | |$K_2 $ | '' | ||
| Line 58: | Line 52: | ||
| |$M_5 $ | '' | |$M_5 $ | '' | ||
| - | :!: Attention: Fonctionne uniquement pour les matériaux " | + | :!: Careful: Only works if used with thixotropic materials ('' |
| ===== OrigViscoThixoYieldStress ===== | ===== OrigViscoThixoYieldStress ===== | ||
| - | Partie visqueuse de la contrainte limite plastique spécifique aux matériaux thixo. Ce modèle dépend de deux paramètres internes spécifiques aux matériaux thixo: le [[doc: | + | Viscous term of the yield stress specific to thixotropic materials. It depends on two internal parameters, the [[doc: |
| $$ | $$ | ||
| Line 71: | Line 65: | ||
| === Description === | === Description === | ||
| - | La loi visqueuse est une loi de viscosité de Burgos | + | This viscous law is a Burgos |
| $$ | $$ | ||
| Line 77: | Line 72: | ||
| $$ | $$ | ||
| - | où | + | where |
| $$ | $$ | ||
| Line 83: | Line 78: | ||
| $$ | $$ | ||
| - | et (loi de Burgos) | + | and (Burgos |
| $$ | $$ | ||
| Line 89: | Line 84: | ||
| $$ | $$ | ||
| - | avec | ||
| $$ | $$ | ||
| K = K_1 e^{K_2(1-f_l)} e^{K_3 \lambda} | K = K_1 e^{K_2(1-f_l)} e^{K_3 \lambda} | ||
| $$ | $$ | ||
| - | |||
| - | et | ||
| $$ | $$ | ||
| Line 100: | Line 92: | ||
| $$ | $$ | ||
| - | === Paramètres | + | === Parameters |
| - | + | ^ Name ^ | |
| - | ^ Nom ^ | + | |Number of the hardening law | '' |
| - | |Numéro de la loi d' | + | |Number of the cohesion degree evolution law |
| - | |Numéro de la loi d' | + | |Initial cohesion degree |
| - | |Valeur initiale du degré de cohésion | + | |Number of the liquid |
| - | |Numéro de la loi d' | + | |Number of the effective liquid |
| - | |Numéro de la loi d' | + | |
| |$K_1 $ | '' | |$K_1 $ | '' | ||
| |$K_2 $ | '' | |$K_2 $ | '' | ||
| Line 118: | Line 109: | ||
| |$M_5 $ | '' | |$M_5 $ | '' | ||
| - | :!: Attention: Fonctionne uniquement pour les matériaux " | + | :!: Careful: Only works if used with thixotropic materials ('' |
| ===== LashkariViscoThixoYieldStress ===== | ===== LashkariViscoThixoYieldStress ===== | ||
| - | Partie visqueuse de la contrainte limite plastique spécifique aux matériaux thixo. Ce modèle dépend de deux paramètres internes spécifiques aux matériaux thixo: le [[doc: | + | Viscous term of the yield stress specific to thixotropic materials. It depends on two internal parameters, the [[doc: |
| $$ | $$ | ||
| Line 131: | Line 122: | ||
| === Description === | === Description === | ||
| - | La loi visqueuse est une loi de viscosité de Burgos | + | This viscous law is a Burgos |
| $$ | $$ | ||
| Line 137: | Line 128: | ||
| $$ | $$ | ||
| - | où | + | where |
| $$ | $$ | ||
| Line 143: | Line 134: | ||
| $$ | $$ | ||
| - | et (loi de Burgos) | + | and (Burgos |
| $$ | $$ | ||
| Line 149: | Line 140: | ||
| $$ | $$ | ||
| - | avec | ||
| $$ | $$ | ||
| K = K_1 e^{K_2(1-f_l)} e^{K_3 \lambda} | K = K_1 e^{K_2(1-f_l)} e^{K_3 \lambda} | ||
| $$ | $$ | ||
| - | |||
| - | et | ||
| $$ | $$ | ||
| Line 160: | Line 148: | ||
| $$ | $$ | ||
| - | === Paramètres | + | === Parameters |
| - | + | ^ Name | |
| - | ^ Nom ^ | + | |Number of the hardening law |
| - | |Numéro de la loi d' | + | |Number of the cohesion degree evolution law |
| - | |Numéro de la loi d' | + | |Initial cohesion degree |
| - | |Valeur initiale du degré de cohésion | + | |Number of the liquid |
| - | |Numéro de la loi d' | + | |Number of the effective liquid |
| - | |Numéro de la loi d' | + | |
| |$K_1 $ | '' | |$K_1 $ | '' | ||
| |$K_2 $ | '' | |$K_2 $ | '' | ||
| Line 179: | Line 166: | ||
| |$M_6 $ | '' | |$M_6 $ | '' | ||
| - | :!: Attention: Fonctionne uniquement pour les matériaux " | + | :!: Careful: Only works if used with thixotropic materials ('' |
| ===== MicroMacroViscoThixoYieldStress ===== | ===== MicroMacroViscoThixoYieldStress ===== | ||
| - | Partie visqueuse de la contrainte limite plastique spécifique aux matériaux thixo. Ce modèle dépend de deux paramètres internes spécifiques aux matériaux thixo: le [[doc: | + | Viscous term of the yield stress specific to thixotropic materials. It depends on two internal parameters, the [[doc: |
| $$ | $$ | ||
| \sigma_{yield}= \sigma_{isoH} + \sigma_{visq} | \sigma_{yield}= \sigma_{isoH} + \sigma_{visq} | ||
| $$ | $$ | ||
| - | |||
| === Description === | === Description === | ||
| - | La partie Viqueuse de la contrainte visco-plastique est calculée par le modèle | + | The viscous yield stress is now computed based on a micro-macro |
| + | |||
| + | At the lower scale, the inclusions and the active zone are both made up of liquid and solid | ||
| + | |||
| + | This model is a system of 3 equations and 3 unknowns | ||
| - | Variable de localisation de la phase solide dans la zone active | ||
| $$ | $$ | ||
| A_a^s=\frac{5 \sigma_a}{3 \sigma_a + 2 \sigma_a^s}\\ | A_a^s=\frac{5 \sigma_a}{3 \sigma_a + 2 \sigma_a^s}\\ | ||
| $$ | $$ | ||
| - | Variable de localisation de la phase solide dans les inclusions | + | Localization variable of the solid phase in the inclusions |
| $$ | $$ | ||
| A_i^s=\frac{5 \sigma_i}{3 \sigma_i + 2 \sigma_i^s}\\ | A_i^s=\frac{5 \sigma_i}{3 \sigma_i + 2 \sigma_i^s}\\ | ||
| $$ | $$ | ||
| - | Variable de localisation des inclusions | + | Localization variable of the inclusions |
| $$ | $$ | ||
| A_i =\frac{5 \sigma_{visq} \sigma_a}{3 \sigma_{visq} \sigma_a + 2 \sigma_i \sigma_a + 6/5 f_a A_i (\sigma_i - \sigma_a)^2 } | A_i =\frac{5 \sigma_{visq} \sigma_a}{3 \sigma_{visq} \sigma_a + 2 \sigma_i \sigma_a + 6/5 f_a A_i (\sigma_i - \sigma_a)^2 } | ||
| $$ | $$ | ||
| - | où on a: | + | where |
| - | Contrainte visqueuse dans la phase solide de la zone active: $$ | + | Viscous stress in the solid phase of the active |
| + | $$ | ||
| \sigma_a^s = k_p (A_a^s \frac{1-(1-f_a)A_i}{f_a})^{m_p-1} (\dot{\overline{\epsilon}}^{vp})^{m_p}\\ | \sigma_a^s = k_p (A_a^s \frac{1-(1-f_a)A_i}{f_a})^{m_p-1} (\dot{\overline{\epsilon}}^{vp})^{m_p}\\ | ||
| $$ | $$ | ||
| - | Contrainte visqueuse dans la phase solide des inclusions: $$ | + | Viscous stress in the solid phase of the inclusions: |
| + | $$ | ||
| \sigma_i^s = k_s (A_i^s A_i)^{m_s-1} (\dot{\overline{\epsilon}}^{vp})^{m_s}\\ | \sigma_i^s = k_s (A_i^s A_i)^{m_s-1} (\dot{\overline{\epsilon}}^{vp})^{m_s}\\ | ||
| $$ | $$ | ||
| - | Contrainte visqueuse dans la zone active: $$ | + | Viscous stress in the active |
| + | $$ | ||
| \sigma_a = k_l \dot{\overline{\epsilon}}^{vp} (1-\lambda A_a^s) + \lambda A_a^s \sigma_a^s \\ | \sigma_a = k_l \dot{\overline{\epsilon}}^{vp} (1-\lambda A_a^s) + \lambda A_a^s \sigma_a^s \\ | ||
| $$ | $$ | ||
| - | Contrainte visqueuse dans les inclusions: $$ | + | Viscous stress in the inclusions: |
| + | $$ | ||
| \sigma_i = k_l \dot{\overline{\epsilon}}^{vp} (1-\frac{1-f_l-f_a \lambda}{1-f_a} A_i^s) + \lambda A_i^s \sigma_i^s \\ | \sigma_i = k_l \dot{\overline{\epsilon}}^{vp} (1-\frac{1-f_l-f_a \lambda}{1-f_a} A_i^s) + \lambda A_i^s \sigma_i^s \\ | ||
| $$ | $$ | ||
| - | Contrainte visqueuse: $$ | + | Viscous stress: $$ |
| \sigma_{visq} = \sigma_a (1 - (1-f_a) A_i) + \sigma_i (1-f_a) A_i | \sigma_{visq} = \sigma_a (1 - (1-f_a) A_i) + \sigma_i (1-f_a) A_i | ||
| $$ | $$ | ||
| Line 235: | Line 227: | ||
| - | === Paramètres === | ||
| - | ^ Nom | + | === Parameters === |
| - | | Paramètre de viscosité des grains | + | ^ Name ^ Metafor |
| - | | Paramètre de viscosité de la phase liquide | + | | Viscosity parameters of solid grains |
| - | | Paramètre de viscosité des joints de grains solides (pontages) | + | | Viscosity parameters of liquid |
| - | | Paramètre de sensibilité à la vitesse de déformation des grains | + | | Viscosity parameters of the solid bonds (by default |
| - | | Paramètre de sensibilité à la vitesse de déformation des joints de grains solides (pontages) | + | | Sensitivity to strain rate of solid grains |
| - | | Fraction de zone active | + | | Sensitivity to strain rate of the solid bonds (by default |
| + | | Active | ||
doc/user/elements/volumes/thixo_yield_stress.1373554473.txt.gz · Last modified: (external edit)
