doc:user:elements:volumes:rupturecritere
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| doc:user:elements:volumes:rupturecritere [2015/07/14 10:24] – [References] canales | doc:user:elements:volumes:rupturecritere [2022/07/14 14:32] (current) – papeleux | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| | | ||
| - | ====== Failure | + | ====== Failure |
| ===== RuptureCriterion ===== | ===== RuptureCriterion ===== | ||
| Line 6: | Line 6: | ||
| === Description === | === Description === | ||
| - | '' | + | '' |
| + | |||
| + | The critical value //C// ('' | ||
| + | |||
| + | The type of failure | ||
| + | |||
| + | |||
| + | ^ Name ^ Description | ||
| + | | '' | ||
| + | | '' | ||
| + | | '' | ||
| + | | '' | ||
| === Parameters === | === Parameters === | ||
| Line 25: | Line 37: | ||
| for a criterion based on a critical value of the equivalent plastic strain. | for a criterion based on a critical value of the equivalent plastic strain. | ||
| + | ===== OneParameterRuptureCriterion ===== | ||
| + | |||
| + | === Description === | ||
| + | |||
| + | Four simple rupture criteria are gathered in one single family. In order to selected one of the criteria the parameter '' | ||
| + | |||
| + | //Cockroft and Latham criterion (dimensional Value) : '' | ||
| + | $$ C = \int_0^{\overline{\varepsilon}^p} \sigma_1 | ||
| + | //Cockroft and Latham criterion (adimensional value) : '' | ||
| + | $$ C = \int_0^{\overline{\varepsilon}^p} \frac{\sigma_1}{\overline{\sigma}} | ||
| + | //Brozzo criterion : '' | ||
| + | $$ C = \int_0^{\overline{\varepsilon}^p} \frac{2\sigma_1}{3(\sigma_1-p)} | ||
| + | //Ayada criterion : '' | ||
| + | $$ C = \int_0^{\overline{\varepsilon}^p} \frac{p}{\overline{\sigma}} | ||
| + | //Rice and Tracey criterion : '' | ||
| + | $$ C = \int_0^{\overline{\varepsilon}^p} \exp\left(\frac{3}{2} \frac{p}{\overline{\sigma}}\right) | ||
| + | |||
| + | **Parameters** | ||
| + | |||
| + | ^ Name ^ Metafor Code ^ Dependency | ||
| + | |Criterion | ||
| ===== BaoRuptureCriterion ===== | ===== BaoRuptureCriterion ===== | ||
| Line 113: | Line 146: | ||
| === Description === | === Description === | ||
| - | The element is broken if the variable //C//, defined below, reaches a critical value: | + | Lemaitre criterion [[doc: |
| $$ | $$ | ||
| Line 134: | Line 167: | ||
| === Description === | === Description === | ||
| - | The element is broken if //W//, whose evolution law is defined below, reaches 1. | + | Goijaerts criterion [[doc: |
| $$ | $$ | ||
| Line 157: | Line 190: | ||
| === Description === | === Description === | ||
| - | Element failure is detected differently whether the element is globally under tension of compression. It is broken if: | + | Maximum Principal Strain criterion [[doc: |
| $ \| \epsilon_{I} \|> $ '' | $ \| \epsilon_{I} \|> $ '' | ||
| Line 169: | Line 202: | ||
| |$A $ | '' | |$A $ | '' | ||
| |$B $ | '' | |$B $ | '' | ||
| + | |||
| + | ===== BaiRuptureCriterion ===== | ||
| + | |||
| + | === Description === | ||
| + | |||
| + | Bai and Wierzbicki rupture criterion [[doc: | ||
| + | $$ | ||
| + | C = \int_0^{\overline{\varepsilon}^p}\dfrac{d\overline{\varepsilon}^{p}}{\overline{\varepsilon}^p_f (\eta, | ||
| + | $$ | ||
| + | where $\overline{\varepsilon}^p_f (\eta, | ||
| + | $$\overline{\varepsilon}^p_f (\eta, | ||
| + | |||
| + | === Parameters === | ||
| + | ^ Name ^ Metafor Code ^ Dependency | ||
| + | |$D_1$ | ||
| + | |$D_2$ | ||
| + | |$D_3$ | ||
| + | |$D_4$ | ||
| + | |$D_5$ | ||
| + | |$D_6$ | ||
| + | |$\eta_{cutoff}$ | ||
| + | |||
| + | |||
| + | ===== LouRuptureCriterion ===== | ||
| + | |||
| + | === Description === | ||
| + | |||
| + | Lou, Yoon and Huh rupture criterion [[doc: | ||
| + | $$ | ||
| + | K = \int_0^{\overline{\varepsilon}^p}\dfrac{d\overline{\varepsilon}^{p}}{\overline{\varepsilon}^p_f (\eta, | ||
| + | $$ | ||
| + | where $\overline{\varepsilon}^p_f$ is defined as: | ||
| + | $$ | ||
| + | \overline{\varepsilon}^p_f = D_3\left( \frac{2}{\sqrt{L^2+3}} \right)^{-D_1} \left( \left\langle \frac{1}{1+C} | ||
| + | \left[ \eta+\frac{3-L}{3\sqrt{L^2+3}}+C \right] \right\rangle \right)^{-D_2} | ||
| + | $$ | ||
| + | |||
| + | with, | ||
| + | $$ | ||
| + | L = \frac{3 \tan\left( \theta \right) - \sqrt{3}}{\tan \left( \theta \right) + \sqrt{3}} | ||
| + | $$ | ||
| + | where $D_1$, $D_2$ and $D_3$ are material parameters. $L$ corresponds to an alternative definition of the Lode angle and the $\left\langle \bullet \right\rangle$ symbol denotes the MacAuley brackets. | ||
| + | |||
| + | === Parameters === | ||
| + | ^ Name ^ Metafor Code ^ Dependency | ||
| + | |$D_1$ | ||
| + | |$D_2$ | ||
| + | |$D_3$ | ||
| + | |$C$ | '' | ||
| + | |||
| ===== References ===== | ===== References ===== | ||
| - | [1] Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. | + | [1] [[http:// |
| + | |||
| + | [2] [[http:// | ||
| + | |||
| + | [3] [[http:// | ||
| + | |||
| + | [4] [[http:// | ||
| + | |||
| + | [5] [[http:// | ||
| + | |||
| + | [6] | ||
| - | [2] Hancock JW, Mackenzie AC. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. //Journal of the Mechanics and Physics of Solids// 1976; | ||
| - | [3] Johnson GR, Cook WH. A constitutive | + | [7] [[http:// |
| - | {{ : | ||
| - | [[doc:user:references]] | + | [8] [[http:// |
doc/user/elements/volumes/rupturecritere.1436862267.txt.gz · Last modified: (external edit)
