Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:rupturecritere

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
doc:user:elements:volumes:rupturecritere [2015/07/14 09:57] – [References] canalesdoc:user:elements:volumes:rupturecritere [2017/04/05 09:21] – [OneParameterRuptureCriterion] canales
Line 1: Line 1:
  
-====== Failure criterion ======+====== Failure criteria ======
  
 ===== RuptureCriterion ===== ===== RuptureCriterion =====
Line 25: Line 25:
 for a criterion based on a critical value of the equivalent plastic strain. for a criterion based on a critical value of the equivalent plastic strain.
  
 +===== OneParameterRuptureCriterion =====
 +
 +=== Description ===
 +
 +Four simple rupture criteria are gathered in one single family. In order to selected one of the criteria the parameter ''RUPT_OP_LAW'' (only parameter in this criterion) need to be defined as: ''COCKROFT'', ''BROZZO'', ''AYADA'' or ''RICE''. Then, the element is broken if the variable C reaches a critical value, which is defined in each case as:
 +
 +//Cockroft and Latham criterion //
 +$$ C = \int_0^{\overline{\varepsilon}^p} \frac{\sigma_1}{\overline{\sigma}}  d\overline{\varepsilon}^p$$
 +//Brozzo criterion//
 +$$ C = \int_0^{\overline{\varepsilon}^p} \frac{2\sigma_1}{3(\sigma_1-p)}  d\overline{\varepsilon}^p$$
 +//Ayada criterion//
 +$$ C = \int_0^{\overline{\varepsilon}^p} \frac{p}{\overline{\sigma}}  d\overline{\varepsilon}^p$$
 +//Rice and Tracey criterion//
 +$$ C = \int_0^{\overline{\varepsilon}^p} \exp\left(\frac{3}{2} \frac{p}{\overline{\sigma}}\right)  d\overline{\varepsilon}^p$$
 +
 +**Parameters**
 +
 +^          Name      ^  Metafor Code  ^ Dependency         ^
 +|Criterion  |  ''RUPT_OP_LAW''  |          -         |
 ===== BaoRuptureCriterion ===== ===== BaoRuptureCriterion =====
  
Line 113: Line 132:
 === Description === === Description ===
  
-The element is broken if the variable //C//, defined below, reaches a critical value:+Lemaitre criterion [[doc:user:elements:volumes:rupturecritere#References|[4]]]. The element is broken if the variable //C//, defined below, reaches a critical value:
  
 $$ $$
Line 134: Line 153:
 === Description === === Description ===
  
-The element is broken if //W//, whose evolution law is defined below, reaches 1.+Goijaerts criterion [[doc:user:elements:volumes:rupturecritere#References|[5]]]. The element is broken if //W//, whose evolution law is defined below, reaches 1.
  
 $$ $$
Line 157: Line 176:
 === Description === === Description ===
  
-Element failure is detected differently whether the element is globally under tension of compression. It is broken if:+Maximum Principal Strain criterion [[doc:user:elements:volumes:rupturecritere#References|[6]]]. Element failure is detected differently whether the element is globally under tension of compression. It is broken if:
  
 $ \| \epsilon_{I} \|> $ ''RUPT_MPSTRAIN_TL'' if $ \epsilon_{I}\ $ + $ \epsilon_{II}\ $ + $ \epsilon_{III}\ $ > 0 $ \| \epsilon_{I} \|> $ ''RUPT_MPSTRAIN_TL'' if $ \epsilon_{I}\ $ + $ \epsilon_{II}\ $ + $ \epsilon_{III}\ $ > 0
Line 169: Line 188:
 |$A $  |  ''RUPT_MPSTRAIN_CL''  |          -         | |$A $  |  ''RUPT_MPSTRAIN_CL''  |          -         |
 |$B $  |  ''RUPT_MPSTRAIN_TL''  |          -          |$B $  |  ''RUPT_MPSTRAIN_TL''  |          -         
 +
 +===== BaiRuptureCriterion =====
 +
 +=== Description ===
 +
 +Bai and Wierzbicki rupture criterion [[doc:user:elements:volumes:rupturecritere#References|[7]]]. The element is broken if the variable C, defined below, reaches a critical value:
 +$$
 + C = \int_0^{\overline{\varepsilon}^p}\dfrac{d\overline{\varepsilon}^{p}}{\overline{\varepsilon}^p_f (\eta,\overline{\theta})}
 +$$
 +where $\overline{\varepsilon}^p_f (\eta,\overline{\theta})$ is defined as:
 +$$\overline{\varepsilon}^p_f (\eta,\overline{\theta}) = \left[ \frac{1}{2}\left( D_1e^{-D_2\eta}+D_5e^{-D_6\eta} \right)-D_3e^{-D_4\eta} \right]\overline{\theta}^2 + \frac{1}{2}\left( D_1e^{- D_2\eta}-D_5e^{-D_6\eta} \right)\overline{\theta}+D_3e^{-D_4\eta}$$
 +
 +=== Parameters === 
 +^          Name      ^  Metafor Code  ^ Dependency         ^
 +|$D_1$  |  ''RUPT_BAI_D1''  |          -         |
 +|$D_2$  |  ''RUPT_BAI_D2''  |          -         |
 +|$D_3$  |  ''RUPT_BAI_D3''  |          -         |
 +|$D_4$  |  ''RUPT_BAI_D4''  |          -         |
 +|$D_5$  |  ''RUPT_BAI_D5''  |          -         |
 +|$D_6$  |  ''RUPT_BAI_D6''  |          -         |
 +|$\eta_{cutoff}$  |  ''RUPT_BAI_CUTOFF''  |          -         |
 +
 +
 +===== LouRuptureCriterion =====
 +
 +=== Description ===
 +
 +Lou, Yoon and Huh rupture criterion [[doc:user:elements:volumes:rupturecritere#References|[8]]]. The element is broken if the variable K, defined below, reaches a critical value:
 +$$
 + K = \int_0^{\overline{\varepsilon}^p}\dfrac{d\overline{\varepsilon}^{p}}{\overline{\varepsilon}^p_f (\eta,\overline{\theta})}
 +$$
 +where $\overline{\varepsilon}^p_f$ is defined as:
 +$$
 +\overline{\varepsilon}^p_f = D_3\left( \frac{2}{\sqrt{L^2+3}} \right)^{-D_1} \left( \left\langle \frac{1}{1+C}
 +\left[ \eta+\frac{3-L}{3\sqrt{L^2+3}}+C \right] \right\rangle \right)^{-D_2}
 +$$
 +
 +with,
 +$$
 +L = \frac{3 \tan\left( \theta \right) - \sqrt{3}}{\tan \left( \theta \right) + \sqrt{3}}
 +$$
 +where $D_1$, $D_2$ and $D_3$ are material parameters. $L$ corresponds to an alternative definition of the Lode angle and the $\left\langle \bullet \right\rangle$ symbol denotes the MacAuley brackets. 
 +
 +=== Parameters === 
 +^          Name      ^  Metafor Code  ^ Dependency         ^
 +|$D_1$  |  ''RUPT_LOU_D1''  |          -         |
 +|$D_2$  |  ''RUPT_LOU_D2''  |          -         |
 +|$D_3$  |  ''RUPT_LOU_D3''  |          -         |
 +|$C$    |  ''RUPT_LOU_C''  |          -         |
 +
  
 ===== References ===== ===== References =====
  
-[1] Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. //International Journal of Mechanical Sciences// 2004;46:81-98.+[1] [[http://www.sciencedirect.com/science/article/pii/S0020740304000360|Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences 2004;46:81-98.]] 
 + 
 +[2] [[http://www.sciencedirect.com/science/article/pii/0022509676900247|Hancock JW, Mackenzie AC. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids 1976;24:147-160.]] 
 + 
 +[3] [[http://wbldb.lievers.net/10134084.html|Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: 7th International Symposium on Ballistics. The Hague: The Netherlands, 1983; 541-547.]] 
 + 
 +[4] [[http://www.springer.com/us/book/9783662027615|Lemaitre J. A Course on Damage Mechanics. Springer-Verlag Berlin Heidelberg, 1992.]] 
 + 
 +[5] [[http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1437060|Goijaerts AM, Govaert LE, Baaijens FPT. Prediction of ductile fracture in metal blanking. Journal of Manufacturing Science and Engineering 2000;122:476-483.]] 
 + 
 +[6] 
  
-[2Hancock JW, Mackenzie ACOn the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. //Journal of the Mechanics and Physics of Solids// 1976;24:147-160.+[7[[http://www.sciencedirect.com/science/article/pii/S0749641907001246|Bai I, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity 2008;24:1071-1096.]]
  
-[3] Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: //7th International Symposium on Ballistics//. The Hague: The Netherlands, 1983; 541-547. 
  
-{{ :doc:user:elements:volumes:rupturecritere:theta.jpg?200 |}}+[8] [[http://www.sciencedirect.com/science/article/pii/S0749641913001617|Lou Y, Yoon JW, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. International Journal of Plasticity 2014;54:56-80.]]
doc/user/elements/volumes/rupturecritere.txt · Last modified: 2022/07/14 14:32 by papeleux

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki