doc:user:elements:volumes:ortho_hypo_materials
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| doc:user:elements:volumes:ortho_hypo_materials [2020/12/08 11:01] – [OrthoElastHypoMaterial] boman | doc:user:elements:volumes:ortho_hypo_materials [2025/07/22 11:56] (current) – [DamageEpIsoHOrthoHypoMaterial] papeleux | ||
|---|---|---|---|
| Line 5: | Line 5: | ||
| === Description === | === Description === | ||
| - | Linear orthotropic material. | + | Linear |
| The strain-stress relation in the orthotropic frame is written as: | The strain-stress relation in the orthotropic frame is written as: | ||
| Line 44: | Line 44: | ||
| $$ | $$ | ||
| - | ===== Parameters === | + | === Parameters === |
| ^ | ^ | ||
| Line 64: | Line 64: | ||
| | Orthotropic axis | '' | | Orthotropic axis | '' | ||
| | Orthotropic axis | '' | | Orthotropic axis | '' | ||
| + | | Orthotropic axis initialized by mesh construction \\ boolean : True - False (def) \\ override OrthoAxis definition | ||
| Only the first two orthotropic axes are computed using '' | Only the first two orthotropic axes are computed using '' | ||
| + | |||
| + | ===== TmElastOrthoHypoMaterial ===== | ||
| + | :!: Metafor version >=3536 | ||
| + | === Description === | ||
| + | Linear thermoelastic orthotropic material with orthotropic thermal conduction law. | ||
| + | |||
| + | Thermal conduction writes in the orthotropic frame | ||
| + | $$ | ||
| + | \boldsymbol{K}~\nabla T = \left[ | ||
| + | \begin{array}{c c c} | ||
| + | K_1 & 0 & 0 \\ | ||
| + | 0 & K_2 & 0 \\ | ||
| + | 0 & 0 & K_3 | ||
| + | \end{array} | ||
| + | \right] \nabla T, | ||
| + | $$ | ||
| + | where $\boldsymbol{K}$ is the orthotropic conduction matrix (in material axes) and $\nabla T$ is the temperature gradient. | ||
| + | |||
| + | Linear thermoelasticity in the orthotropic frame writes | ||
| + | $$ | ||
| + | \boldsymbol{\sigma} = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}^{th}) = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\alpha} \Delta T), | ||
| + | $$ | ||
| + | with stress tensor $\boldsymbol{\sigma}$, | ||
| + | |||
| + | Thermoelastic dissipation term $\dot{W}^{te}$ is given by the general (anisotropic) relation | ||
| + | $$ | ||
| + | \dot{W}^{te} = -\eta_{te} \left(\sum_{i=1}^3 \sum_{j=1}^3 \mathbb{H}_{ijkl} \alpha_{kl} \right)T \frac{\dot{J}}{J}, | ||
| + | $$ | ||
| + | with fraction of heat dissipated thermoelastic energy $\eta_{te}$ and determinant of the Jacobian matrix $J$. | ||
| + | |||
| + | === Parameters === | ||
| + | ^ | ||
| + | | Density | ||
| + | | Young Modulus $E_1$ | '' | ||
| + | | Young Modulus $E_2$ | '' | ||
| + | | Young Modulus $E_3$ | '' | ||
| + | | Poisson ratio $\nu_{12}$ | ||
| + | | Poisson ratio $\nu_{13}$ | ||
| + | | Poisson ratio $\nu_{23}$ | ||
| + | | Shear modulus $G_{12}$ | ||
| + | | Shear modulus $G_{13}$ | ||
| + | | Shear modulus $G_{23}$ | ||
| + | | Objectivity method | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis initialized by mesh construction \\ boolean : True - False (def) \\ override OrthoAxis definition | ||
| + | | Thermal Expansion $\alpha_1$ | ||
| + | | Thermal Expansion $\alpha_2$ | ||
| + | | Thermal Expansion $\alpha_3$ | ||
| + | | Conductivity $K_1$ | '' | ||
| + | | Conductivity $K_2$ | '' | ||
| + | | Conductivity $K_3$ | '' | ||
| + | | Heat Capacity $C_p$ | '' | ||
| + | | Dissipated thermoelastic power fraction $\eta_e$ | ||
| + | | Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | ||
| ===== EpIsoHOrthoHypoMaterial ===== | ===== EpIsoHOrthoHypoMaterial ===== | ||
| Line 83: | Line 143: | ||
| where $\overline{\sigma}$ is an equivalent stress, specific to orthotropic materials. See for example the [[doc: | where $\overline{\sigma}$ is an equivalent stress, specific to orthotropic materials. See for example the [[doc: | ||
| - | ===== Parameters === | + | === Parameters === |
| ^ | ^ | ||
| Line 105: | Line 165: | ||
| | Orthotropic axis | '' | | Orthotropic axis | '' | ||
| | Orthotropic axis | '' | | Orthotropic axis | '' | ||
| + | | Orthotropic axis initialized by mesh construction \\ boolean : True - False (def) \\ override OrthoAxis definition | ||
| + | |||
| + | ===== TmEpIsoHOrthoHypoMaterial ===== | ||
| + | :!: Metafor version >=3536 | ||
| + | === Description === | ||
| + | Thermomechanical elastoplastic orthotropic material with isotropic hardening. The thermal part of the law is similar to the one of the [[# | ||
| + | |||
| + | === Parameters === | ||
| + | ^ | ||
| + | | Density | ||
| + | | Young Modulus $E_1$ | '' | ||
| + | | Young Modulus $E_2$ | '' | ||
| + | | Young Modulus $E_3$ | '' | ||
| + | | Poisson ratio $\nu_{12}$ | ||
| + | | Poisson ratio $\nu_{13}$ | ||
| + | | Poisson ratio $\nu_{23}$ | ||
| + | | Shear modulus $G_{12}$ | ||
| + | | Shear modulus $G_{13}$ | ||
| + | | Shear modulus $G_{23}$ | ||
| + | | Number of the material law which defines the yield stress $\sigma_{yield}$ | ||
| + | | Number of the plastic criterion | ||
| + | | Objectivity method | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis | '' | ||
| + | | Orthotropic axis initialized by mesh construction \\ boolean : True - False (def) \\ override OrthoAxis definition | ||
| + | | Thermal Expansion $\alpha_1$ | ||
| + | | Thermal Expansion $\alpha_2$ | ||
| + | | Thermal Expansion $\alpha_3$ | ||
| + | | Conductivity $K_1$ | '' | ||
| + | | Conductivity $K_2$ | '' | ||
| + | | Conductivity $K_3$ | '' | ||
| + | | Heat Capacity $C_p$ | '' | ||
| + | | Dissipated thermoelastic power fraction $\eta_e$ | ||
| + | | Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | ||
| ===== DamageEpIsoHOrthoHypoMaterial ===== | ===== DamageEpIsoHOrthoHypoMaterial ===== | ||
| Line 115: | Line 213: | ||
| The damage part consists in a material softening governed by one or several damage variables $d_{ij}$, whose value is included between 0 and 1. Typically, a modulus equal to $E_i$ before damage becomes $(1-d_i)\, | The damage part consists in a material softening governed by one or several damage variables $d_{ij}$, whose value is included between 0 and 1. Typically, a modulus equal to $E_i$ before damage becomes $(1-d_i)\, | ||
| - | ===== Parameters === | + | === Parameters === |
| ^ | ^ | ||
| Line 139: | Line 237: | ||
| | Orthotropic axis | '' | | Orthotropic axis | '' | ||
| | Orthotropic axis | '' | | Orthotropic axis | '' | ||
| + | | Orthotropic axis initialized by mesh construction \\ boolean : True - False (def) \\ override OrthoAxis definition | ||
doc/user/elements/volumes/ortho_hypo_materials.1607421703.txt.gz · Last modified: by boman
