This is an old revision of the document!
Table of Contents
Isotropic hardening
The IsotropicHardening
class manages all isotropic hardening laws in Metafor, which are described below.
LinearIsotropicHardening
Description
Linear isotropic hardening
$$ \sigma_{vm} = \sigma^{el} + h\, \bar{\varepsilon}^{vp} $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Initial yield stress $\sigma^{el}$ | IH_SIGEL | TM/TO |
Plastic Modulus $h $ | IH_H | TM/TO |
SaturatedIsotropicHardening
Description
Saturated isotropic hardening
$$ \sigma_{vm} = \sigma^{el} + Q\left(1-\exp\left(-\xi \bar{\varepsilon}^{vp}\right)\right) $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Initial yield stress $\sigma^{el}$ | IH_SIGEL | TM/TO |
$Q $ | IH_Q | TM/TO |
$\xi$ | IH_KSI | TM/TO |
DoubleSaturatedIsotropicHardening
Description
Double saturated isotropic hardening
$$ \sigma_{vm} = \sigma^{el} + Q_1\left(1-\exp\left(-\xi_1 \bar{\varepsilon}^{vp}\right)\right) + Q_2\left(1-\exp\left(-\xi_2 \bar{\varepsilon}^{vp}\right)\right) $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Initial yield stress $\sigma^{el}$ | IH_SIGEL | TM/TO |
$Q_1$ | IH_Q1 | TM/TO |
$\xi_1$ | IH_KSI1 | TM/TO |
$Q_2$ | IH_Q2 | TM/TO |
$\xi_2$ | IH_KSI2 | TM/TO |
RambergOsgoodIsotropicHardening
Description
Ramberg-Osgood isotropic hardening
$$ \sigma_{vm} = \sigma^{el} \left(1+A\, \bar{\varepsilon}^{vp}\right)^{\frac{1}{n}} $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Initial yield stress $\sigma^{el}$ | IH_SIGEL | TM/TO |
$A $ | IH_A | TM/TO |
$n $ | IH_N | TM/TO |
SwiftIsotropicHardening
Description
Swift isotropic hardening (a more common formulation of Ramberg - Osgood)
$$ \sigma_{vm} = \sigma^{el} +B \left(\bar{\varepsilon}^{vp}\right)^{n} $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Initial yield stress $\sigma^{el}$ | IH_SIGEL | TM/TO |
$B $ | IH_B | TM/TO |
$n $ | IH_N | TM/TO |
KrupkowskyIsotropicHardening
Description
Krupkowski isotropic hardening
$$ \sigma_{vm} = K \left(\bar{\varepsilon}^{vp}_ {0} + \bar{\varepsilon}^{vp}\right)^{n} $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Initial equivalent plastic strain | IH_EVPL0 | TM/TO |
$K $ | IH_K | TM/TO |
$n $ | IH_N | TM/TO |
Nl8pIsotropicHardening
Description
Nonlinear isotropic hardening with 8 parameters. First one implemented, can be used to do almost everything.
$$ \sigma_{vm} = \left(P_2-P_1\right) \left(1-\exp\left(-P_3\bar{\varepsilon}^{vp}\right)\right) + P_4\left(\bar{\varepsilon}^{vp}\right)^{P_5} + $$ $$ + P_1\left(1+P_6\bar{\varepsilon}^{vp}\right)^{P_7} + P_8\bar{\varepsilon}^{vp} $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
$P_1$ | IH_P1 | TM/TO |
$P_2$ | IH_P2 | TM/TO |
$P_3$ | IH_P3 | TM/TO |
$P_4$ | IH_P4 | TM/TO |
$P_5$ | IH_P5 | TM/TO |
$P_6$ | IH_P6 | TM/TO |
$P_7$ | IH_P7 | TM/TO |
$P_8$ | IH_P8 | TM/TO |
FunctIsotropicHardening
Description
Piecewise linear isotropic hardening. A function is associated to the yield stress.
$$ \sigma_{vm} = \sigma^{el} \, * \, f\left(\bar{\varepsilon}^{vp}\right) $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Initial yield stress $\sigma^{el}$ | IH_SIGEL | IF_EPL |
An Functions y=f(t) must be associated to IH_SIGEL
(depending on Field(IF_EPL)
).
PowerIsotropicHardening
Description
$$ \sigma_{vm}= P_1 \left[ P_2 \sigma_{vm} + P_3 \overline{\varepsilon}^{vp} \right] ^{P_4} $$
This law is integrated with an iterative method.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
$P_1$ | IH_P1 | TM/TO |
$P_2$ | IH_P2 | TM/TO |
$P_3$ | IH_P3 | TM/TO |
$P_4$ | IH_P4 | TM/TO |
AutesserreIsotropicHardening
Description
“Smatch” isotropic hardening.
$$ \sigma_{vm}= \left( P_1 + P_2 \overline{\varepsilon}^{vp} \right) \left( 1 - P_3 \exp \left( -P_4 \overline{\varepsilon}^{vp} \right) \right) + P_5 $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
$P_1$ | IH_P1 | TM/TO |
$P_2$ | IH_P2 | TM/TO |
$P_3$ | IH_P3 | TM/TO |
$P_4$ | IH_P4 | TM/TO |
$P_5$ | IH_P5 | TM/TO |
GoijaertsIsotropicHardening
Description
“Goijaerts” isotropic hardening
$$ \sigma_{vm}= \sigma_{el} + M_1 \left( 1-\exp(-\frac{\overline{\varepsilon}^{vp}}{M_2})\right) + M_3 \sqrt{\overline{\varepsilon}^{vp}} + M_4 \overline{\varepsilon}^{vp} $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
$M_1$ | IH_M1 | TM/TO |
$M_2$ | IH_M2 | TM/TO |
$M_3$ | IH_M3 | TM/TO |
$M_4$ | IH_M4 | TM/TO |
KocksMeckingIsotropicHardening
Description
“Kocks-Mecking” isotropic hardening
$$ \sigma_{y} = \sigma_{y}^{0} + \frac{\Theta_{0}}{\beta} [ 1-exp(-\beta \bar{\varepsilon}^{vp}) ] \;\;\; si \;\;\; \bar{\varepsilon}^{vp} < \bar{\varepsilon}^{vp}_{tr} $$
$$ \sigma_{y} = \sigma_{y}^{tr} + \Theta_{IV} \left( \bar{\varepsilon}^{vp} - \bar{\varepsilon}^{vp}_{tr}\right) \;\;\; si \;\;\; \bar{\varepsilon}^{vp} >\bar{\varepsilon}^{vp}_{tr} $$
where the transition yield stress between stages 3 and 4 is defined as
$$ \sigma_{y}^{tr} = \sigma_{y}^{0} + \frac{\Theta_{0}-\Theta_{IV}}{\beta} $$
and the corresponding yield strain as
$$ \bar{\varepsilon}^{vp}_{tr} = \frac{1}{\beta} \ln \left(\frac{\Theta_{0}}{\Theta_{IV}}\right) $$
Parameters
Name | Metafor Code | Dependency |
---|---|---|
$\sigma_0$ | IH_SIGEL | TM/TO |
$\beta$ | KM_BETA | TM/TO |
$\Theta_{0}$ | KM_THETA0 | TM/TO |
$\Theta_{IV}$ | KM_THETA4 | TM/TO |