Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_vol_potential

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
doc:user:elements:volumes:hyper_vol_potential [2025/11/14 11:06] – [HartmannNefVolumicPotential] vanhulledoc:user:elements:volumes:hyper_vol_potential [2025/11/14 11:34] (current) – [Volumic Potentials] vanhulle
Line 1: Line 1:
 ====== Volumic Potentials ====== ====== Volumic Potentials ======
-The ''VolumicPotential'' material law regroups all the functions $\mathcal{F}(J)$ such that the volumetric part of the strain-energy density function $W_{vol}$ can be expressed as+The ''VolumicPotential'' material law regroups all the functions $\mathcal{f}(J)$ such that the volumetric part of the strain-energy density function $W_{vol}$ can be expressed as
 $$ $$
 W_{vol} = k_0\mathcal{f}(J) W_{vol} = k_0\mathcal{f}(J)
Line 40: Line 40:
 No parameters required No parameters required
  
-===== HartmannNefVolumicPotential =====+===== HartmannNeffVolumicPotential =====
  
 === Description === === Description ===
 Volumetric strain density from {{:doc:user:references:materials:2003_polyconvexity_of_generalized_polynomial_type_hyperelastic_strain_energy_function_Hartmann_Neff.pdf|Hartmann S.,Neff P., 2003 Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility, Int. J. Solids Struct., 40, 2767–2791.}} Volumetric strain density from {{:doc:user:references:materials:2003_polyconvexity_of_generalized_polynomial_type_hyperelastic_strain_energy_function_Hartmann_Neff.pdf|Hartmann S.,Neff P., 2003 Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility, Int. J. Solids Struct., 40, 2767–2791.}}
 $$ $$
-\mathcal{f}(J) = \frac{1}{2}\left(J-1\right)^\frac{1}{2}\left(\text{ln}J\right)^2+\mathcal{f}(J) = \frac{1}{50}\left(J^5+J^{-5}-2\right)
 $$ $$
  
 === Parameters === === Parameters ===
 No parameters required No parameters required
 +
 +
 +===== MieheVolumicPotential =====
 +
 +=== Description ===
 +Volumetric strain density from {{https://onlinelibrary.wiley.com/doi/10.1002/nme.1620371202|Miehe C., 1994, Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. Numer. Meth. Engng., 37, 1981–2004.}}
 +$$
 +\mathcal{f}(J) = J - \text{ln}J -1
 +$$
 +
 +=== Parameters ===
 +No parameters required
 +
 +
 +===== SimoTaylorVolumicPotential =====
 +
 +=== Description ===
 +Volumetric strain density from {{:doc:user:references:materials:1991_quasi-incompressible_finite_elasticity_in_principal_stretches_continuum_basis_and_numerical_algorithms_simo_taylor.pdf|Simo J., Taylor R., 1991, Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Eng., 85, 273–310.}}
 +$$
 +\mathcal{f}(J) = \frac{1}{4}\left( J^2 - 2\text{ln}J - 1 \right)
 +$$
 +
 +=== Parameters ===
 +No parameters required
 +
 +
 +
 +===== OgdenVolumicPotential =====
 +
 +=== Description ===
 +Volumetric strain density from {{:doc:user:references:materials:1972_large_deformation_isotropic_elasticity_on_the_correlation_of_theory_and_experiment_for_incompressible_rubberlike_solids_Ogden.pdf|Ogden R. W., 1972, Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond., 326, 565–584.}}
 +$$
 +\mathcal{f}(J) = \frac{1}{\beta^2}\left( \beta\text{ln}J + J^{-\beta} - 1 \right)
 +$$
 +where $\beta$ is an experimentally determined material parameter.
 +
 +=== Parameters ===
 +^   Name                                                  ^  Metafor Code  ^ Dependency ^
 +| Ogden beta parameter ($\beta$)  |  ''HYPER_OGDEN_BETA''  |  ''TO/TM''  |
doc/user/elements/volumes/hyper_vol_potential.1763114778.txt.gz · Last modified: by vanhulle

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki