Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_materials

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
doc:user:elements:volumes:hyper_materials [2024/12/17 09:27] – [MooneyRivlinHyperMaterial] bomandoc:user:elements:volumes:hyper_materials [2025/02/24 15:07] (current) vanhulle
Line 14: Line 14:
  
 === Parameters === === Parameters ===
-^   Name                                                  ^  Metafor Code  ^ +^   Name                                                  ^  Metafor Code  ^ Dependency 
-| Density                                                 |''MASS_DENSITY''+| Density                                                  ''MASS_DENSITY''   ''TO/TM''  
-| NeoHookean coefficient ($C_1$)                          | ''RUBBER_C1''  |  +| NeoHookean coefficient ($C_1$)                          |  ''RUBBER_C1''  |  ''TO/TM'' 
-| Initial bulk modulus ($k_0$)                            |''RUBBER_PENAL''+| Initial bulk modulus ($k_0$)                            |  ''RUBBER_PENAL''   ''TO/TM'' 
 +| Material temperature evolution law                      |  ''TEMP''  |    ''TM''   | 
 +| Thermal expansion coefficient ($\alpha$)                |  ''THERM_EXPANSION''  |  ''TO/TM''  |
  
 +===== TmNeoHookeanHyperMaterial =====
 +<note important> **Metafor version $\geq$ 3554** </note>
 +=== Description ===
 +Neo-Hookean hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
 +
 +Here, the ''TEMP'' parameter is not relevant anymore.
 +
 +=== Parameters ===
 +^   Name                                                  ^  Metafor Code  ^ Dependency ^
 +| Density                                                  ''MASS_DENSITY''  |  ''TO/TM''  |
 +| NeoHookean coefficient ($C_1$)                          |  ''RUBBER_C1''  |  ''TO/TM''  |
 +| Initial bulk modulus ($k_0$)                            |  ''RUBBER_PENAL''  |  ''TO/TM''  |
 +| Thermal expansion coefficient ($\alpha$)                |  ''THERM_EXPANSION''  |  ''TO/TM''  |
 +| Conductivity                                            |    ''CONDUCTIVITY''    ''TO/TM''  |
 +| Heat capacity                                             ''HEAT_CAPACITY''    ''TO/TM''  |
 +| Dissipated thermoelastic power fraction                     ''DISSIP_TE''          -      |
 +| Dissipated (visco)plastic power fraction (Taylor-Quinney factor)  |     ''DISSIP_TQ''          -      |
 ===== MooneyRivlinHyperMaterial ===== ===== MooneyRivlinHyperMaterial =====
  
Line 33: Line 52:
  
 === Parameters === === Parameters ===
-^   Name                              Metafor Code           ^  +^   Name                              Metafor Code           ^  Dependency 
-| Density                            |''MASS_DENSITY''           +| Density                            |  ''MASS_DENSITY''         |  ''TO/TM''  | 
-| Mooney-Rivlin coefficient ($C_1$)  | ''RUBBER_C1''             +| Mooney-Rivlin coefficient ($C_1$)   ''RUBBER_C1''           |  ''TO/TM''  | 
-| Mooney-Rivlin coefficient ($C_2$)  | ''RUBBER_C2''             +| Mooney-Rivlin coefficient ($C_2$)   ''RUBBER_C2''           |  ''TO/TM''  | 
-| Initial bulk modulus ($k_0$)       |''RUBBER_PENAL''         |  +| Initial bulk modulus ($k_0$)        ''RUBBER_PENAL''         |  ''TO/TM'' 
 +| Material temperature evolution law                      |  ''TEMP''  |    ''TM''   | 
 +| Thermal expansion coefficient ($\alpha$)                |  ''THERM_EXPANSION''  |  ''TO/TM''  |
  
  
 <WRAP center round important 60%> <WRAP center round important 60%>
 +**Version < 3554**\\
 This material has no analytical material tangent stiffness. The latter should be computed by pertubation (global or material). \\ This material has no analytical material tangent stiffness. The latter should be computed by pertubation (global or material). \\
 See ''STIFFMETHOD'' in the element properties of [[doc:user:elements:volumes:volumeelement|Volume elements]]. See ''STIFFMETHOD'' in the element properties of [[doc:user:elements:volumes:volumeelement|Volume elements]].
 </WRAP> </WRAP>
 +
 +===== TmMooneyRivlinHyperMaterial =====
 +<note important> **Metafor version $\geq$ 3554** </note>
 +=== Description ===
 +
 +Mooney-Rivlin hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
 +
 +Here, the ''TEMP'' parameter is not relevant anymore.
 +
 +=== Parameters ===
 +^   Name                                                  ^  Metafor Code  ^ Dependency ^
 +| Density                                                  ''MASS_DENSITY''  |  ''TO/TM''  |
 +| Mooney-Rivlin coefficient ($C_1$)                          |  ''RUBBER_C1''  |  ''TO/TM''  |
 +| Mooney-Rivlin coefficient ($C_2$)  |   ''RUBBER_C2''            ''TO/TM''  |
 +| Initial bulk modulus ($k_0$)                            |  ''RUBBER_PENAL''  |  ''TO/TM''  |
 +| Thermal expansion coefficient ($\alpha$)                |  ''THERM_EXPANSION''  |  ''TO/TM''  |
 +| Conductivity                                            |    ''CONDUCTIVITY''    ''TO/TM''  |
 +| Heat capacity                                             ''HEAT_CAPACITY''    ''TO/TM''  |
 +| Dissipated thermoelastic power fraction                     ''DISSIP_TE''          -      |
 +| Dissipated (visco)plastic power fraction (Taylor-Quinney factor)  |     ''DISSIP_TQ''          -      |
 +
 +===== HolzapfelGasserOgdenHyperMaterial =====
 +
 +=== Description ===
 +Holzapfel-Gasser-Ogden (invariant-based) anisotropic hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration. This model is particularly suited to predict the response of **biological tissues**.
 +
 +(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e.  $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
 +
 +The strain-energy density function $W$ is expressed as the sum of an **isotropic** (=**matrix**) and **anisotropic** (=**fibers**) contribution:
 +$$
 +W\left(\bar{I}_1,\bar{I}_4,J \right) = W_{iso}\left(\bar{I}_1,J \right) + W_{ani}\left(\bar{I}_1,\bar{I}_4\right)
 +$$
 +
 +The **isotropic** contribution takes the form of a **generalized Neo-Hookean** model:
 +$$
 +W_{iso}\left(\bar{I}_1,J \right) = C_1\left(\bar{I}_1 -3\right) +K f\left(J\right) = C_1\left(\bar{I}_1 -3\right) +\frac{k_0}{2}\text{ln}^2 J
 +$$
 +
 +The **anisotropic** contribution to the strain energy density function writes:
 +$$
 +W_{ani}\left(\bar{I}_1,\bar{I}_4\right) = \frac{k_1}{2k_2} \sum_{\alpha=1}^n \left[ e^{k_2\left<E_\alpha \right>^2} - 1 \right] = \frac{k_1}{2k_2} \sum_{\alpha=1}^n \left[ e^{k_2\left<d(\bar{I}_1-3)+(1-3d)(\bar{I}_4^\alpha - 1)\right>^2} - 1 \right],
 +$$
 +where $k_1$[MPa] and $k_2$[-] are material parameters characterizing all fiber families in the material. $d\in[0,~\frac{1}{3}]$ is a parameter accounting for **fiber dispersion**, with $d=0$ corresponding to **perfectly aligned** fibers whilst $d=\frac{1}{3}$ corresponds to **randomly oriented** fibers (isotropic response). The model adds up to three different families of fibers ($\alpha \leq 3$), with their initial orientation given by $\mathbf{a}^\alpha = \left[a_{\alpha x},~a_{\alpha y},~a_{\alpha z} \right]$. Fiber directions do not have to be orthogonal.
 +
 +More information and mathematical derivations, such as the analytical tangent stiffness matrix, can be found in {{ :doc:user:elements:volumes:metafor_hgo.pdf |}}.
 +
 +=== Parameters ===
 +^   Name                              Metafor Code           
 +| Density                            |''MASS_DENSITY''         |  
 +| Mooney-Rivlin coefficient ($C_1$)  | ''RUBBER_C1''           |  
 +| Initial bulk modulus ($k_0$)       |''RUBBER_PENAL''         |  
 +| HGO parameter $k_1$   |''HGO_K1''  |
 +| HGO parameter $k_2$   |''HGO_K2''  |
 +| Fiber dissipation $d$ (optional, default=0)  |''HGO_DISP''  |
 +| Direction of $1^{st}$ fiber family $\mathbf{a}^1$  | ''HGO_FIB1_X'', ''HGO_FIB1_Y'', ''HGO_FIB1_Z''  |
 +| Direction of $2^{nd}$ fiber family $\mathbf{a}^2$  | ''HGO_FIB2_X'', ''HGO_FIB2_Y'', ''HGO_FIB2_Z''  |
 +| Direction of $3^{rd}$ fiber family $\mathbf{a}^3$  | ''HGO_FIB3_X'', ''HGO_FIB3_Y'', ''HGO_FIB3_Z''  |
  
 ===== NeoHookeanHyperPk2Material ===== ===== NeoHookeanHyperPk2Material =====
Line 65: Line 144:
 === Parameters === === Parameters ===
  
-^   Name                                                  ^     Metafor Code   ^ +^   Name                                                  ^     Metafor Code   ^ Dependency 
-| Density                                                  ''MASS_DENSITY'' +| Density                                                  ''MASS_DENSITY''  |  ''TO/TM'' 
-| Initial bulk modulus ($k_0$)                            |    ''HYPER_K0''    | +| Initial bulk modulus ($k_0$)                            |    ''HYPER_K0''    |  ''TO/TM''  
-| Initial shear modulus ($g_0$)                              ''HYPER_G0''    |+| Initial shear modulus ($g_0$)                              ''HYPER_G0''    |  ''TO/TM'' 
 +| Material temperature evolution law                      |  ''TEMP''  |    ''TM''   | 
 +| Thermal expansion coefficient ($\alpha$)                |  ''THERM_EXPANSION''  |  ''TO/TM''  |
  
 ===== LogarihtmicHyperPk2Material ===== ===== LogarihtmicHyperPk2Material =====
Line 76: Line 157:
 Logarithmic hyperelastic law, using a ''PK2'' tensor. Logarithmic hyperelastic law, using a ''PK2'' tensor.
  
-The potential per unit volume is computed based on the average compressibility of the element, ($q$): +The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): 
  
 $$ $$
Line 90: Line 171:
 === Parameters === === Parameters ===
  
-^   Name                                                 Metafor Code     ^ +^   Name                                                 Metafor Code     ^ Dependency 
-| Density                                                  ''MASS_DENSITY'' +| Density                                                  ''MASS_DENSITY''  |  ''TO/TM'' 
-| Initial bulk modulus ($k_0$)  |    ''HYPER_K0''    | +| Initial bulk modulus ($k_0$)  |    ''HYPER_K0''    |  ''TO/TM''  
-| Initial shear modulus ($g_0$)        ''HYPER_G0''    | +| Initial shear modulus ($g_0$)        ''HYPER_G0''    |  ''TO/TM'' 
 +| Material temperature evolution law                      |  ''TEMP''  |    ''TM''   | 
 +| Thermal expansion coefficient ($\alpha$)                |  ''THERM_EXPANSION''  |  ''TO/TM'' 
  
 ===== EvpIsoHLogarithmicHyperPk2Material ===== ===== EvpIsoHLogarithmicHyperPk2Material =====
Line 115: Line 199:
  
 ^   Name                                                                         Metafor Code      Dependency ^ ^   Name                                                                         Metafor Code      Dependency ^
-| Density                                                                    |  ''MASS_DENSITY''        +| Density                                                                    |  ''MASS_DENSITY''  ''TO/TM''  
-| Initial bulk modulus ($k_0$)                                                  ''HYPER_K0''    |        +| Initial bulk modulus ($k_0$)                                                  ''HYPER_K0''    |  ''TO/TM''  
-| Initial shear modulus ($g_0$)                                              |    ''HYPER_G0''    |        +| Initial shear modulus ($g_0$)                                              |    ''HYPER_G0''    |  ''TO/TM''  |
 | Number of the material law which defines the yield stress $\sigma_{yield}$ |    ''YIELD_NUM''      -     | | Number of the material law which defines the yield stress $\sigma_{yield}$ |    ''YIELD_NUM''      -     |
 +| Material temperature evolution law                      |  ''TEMP''  |    ''TM''   |
 +| Thermal expansion coefficient ($\alpha$)                |  ''THERM_EXPANSION''  |  ''TO/TM''  |
  
 ===== FunctionBasedHyperPk2Material ===== ===== FunctionBasedHyperPk2Material =====
Line 137: Line 223:
  
 ^   Name                                                  ^     Metafor Code      Dependency ^ ^   Name                                                  ^     Metafor Code      Dependency ^
-| Density                                                  ''MASS_DENSITY''                  +| Density                                                  ''MASS_DENSITY''            ''TO/TM''  
-| Initial bulk modulus ($k_0$)                            |    ''HYPER_K0''                    +| Initial bulk modulus ($k_0$)                            |    ''HYPER_K0''              ''TO/TM''  
-| Number of the hyperelastic law                          |    ''HYPER_FUNCTION_NO''    |    -     +| Number of the hyperelastic law                          |    ''HYPER_FUNCTION_NO''    |    -     
 +| Material temperature evolution law                      |  ''TEMP''  |    ''TM''   | 
 +| Thermal expansion coefficient ($\alpha$)                |  ''THERM_EXPANSION''  |  ''TO/TM''  |
  
  
Line 182: Line 270:
  
 ^   Name                                                 Metafor Code      Dependency ^ ^   Name                                                 Metafor Code      Dependency ^
-| Density                                                    ''MASS_DENSITY''                +| Density                                                    ''MASS_DENSITY''          ''TO/TM''  
-| Initial bulk modulus ($k_0$)  |    ''HYPER_K0''                    |+| Initial bulk modulus ($k_0$)  |    ''HYPER_K0''              ''TO/TM''  |
 | Number of the main viscoelastic law              |    ''MAIN_FUNCTION_NO''        -      | Number of the main viscoelastic law              |    ''MAIN_FUNCTION_NO''        -     
 | Number of the first Maxwell viscoelastic law      |    ''MAXWELL_FUNCTION_NO1'' |    -     | | Number of the first Maxwell viscoelastic law      |    ''MAXWELL_FUNCTION_NO1'' |    -     |
 | Number of the second Maxwell viscoelastic law (optional)    |    ''MAXWELL_FUNCTION_NO2'' |    -     | | Number of the second Maxwell viscoelastic law (optional)    |    ''MAXWELL_FUNCTION_NO2'' |    -     |
 | Number of the third Maxwell viscoelastic law (optional)    |    ''MAXWELL_FUNCTION_NOI'' |    -     | | Number of the third Maxwell viscoelastic law (optional)    |    ''MAXWELL_FUNCTION_NOI'' |    -     |
 +| Material temperature evolution law                      |  ''TEMP''  |    ''TM''   |
 +| Thermal expansion coefficient ($\alpha$)                |  ''THERM_EXPANSION''  |  ''TO/TM''  |
  
doc/user/elements/volumes/hyper_materials.1734424025.txt.gz · Last modified: 2024/12/17 09:27 by boman

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki