Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_materials

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
doc:user:elements:volumes:hyper_materials [2015/01/26 12:12] jorisdoc:user:elements:volumes:hyper_materials [2024/04/12 14:55] radermecker
Line 1: Line 1:
 ====== Hyperelastic materials ====== ====== Hyperelastic materials ======
 +
 +===== NeoHookeanHyperMaterial =====
 +
 +=== Description ===
 +
 +Neo-Hookean hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
 +
 +(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e.  $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
 +
 +$$
 + W\left(I_1,I_2,J\right)  =  \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right]
 +$$
 +
 +
 +
 +$$
 +U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right]
 +$$
 +
 +=== Parameters ===
 +^   Name                                                  ^  Metafor Code  ^
 +| Density                                                 |''MASS_DENSITY''|
 +| NeoHookean coefficient ($C_1$)                          | ''RUBBER_C1'' 
 +| Initial bulk modulus ($k_0$)                            |''RUBBER_PENAL''
 +
 +===== MooneyRivlinHyperMaterial =====
 +
 +=== Description ===
 +
 +Mooney-Rivlin hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
 +
 +(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e.  $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
 +
 +$$
 + W\left(I_1,I_2,J\right)  =  \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + C_2\left(\bar{I_2} - 3\right)+ \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right]
 +$$
 +
 +
 +
 +$$
 +U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right]
 +$$
 +
 +=== Parameters ===
 +^   Name                                                  ^  Metafor Code  ^
 +| Density                                                 |''MASS_DENSITY''|
 +| Mooney-Rivlin coefficient ($C_1$)                          | ''RUBBER_C1'' 
 +| Mooney-Rivlin coefficient ($C_2$)                          | ''RUBBER_C2'' 
 +| Initial bulk modulus ($k_0$)                            |''RUBBER_PENAL''
 +
  
 ===== NeoHookeanHyperPk2Material ===== ===== NeoHookeanHyperPk2Material =====
Line 24: Line 74:
 | Density                                                  ''MASS_DENSITY''  | | Density                                                  ''MASS_DENSITY''  |
 | Initial bulk modulus ($k_0$)                            |    ''HYPER_K0''    | | Initial bulk modulus ($k_0$)                            |    ''HYPER_K0''    |
-| Initial shear modulus ($g_0$)                              ''HYPER_G0''    | +| Initial shear modulus ($g_0$)                              ''HYPER_G0''    |
  
 ===== LogarihtmicHyperPk2Material ===== ===== LogarihtmicHyperPk2Material =====
doc/user/elements/volumes/hyper_materials.txt · Last modified: 2024/05/02 11:15 by radermecker

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki