Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_materials

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
doc:user:elements:volumes:hyper_materials [2014/10/01 17:42] jorisdoc:user:elements:volumes:hyper_materials [2024/04/12 14:55] radermecker
Line 1: Line 1:
 ====== Hyperelastic materials ====== ====== Hyperelastic materials ======
 +
 +===== NeoHookeanHyperMaterial =====
 +
 +=== Description ===
 +
 +Neo-Hookean hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
 +
 +(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e.  $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
 +
 +$$
 + W\left(I_1,I_2,J\right)  =  \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right]
 +$$
 +
 +
 +
 +$$
 +U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right]
 +$$
 +
 +=== Parameters ===
 +^   Name                                                  ^  Metafor Code  ^
 +| Density                                                 |''MASS_DENSITY''|
 +| NeoHookean coefficient ($C_1$)                          | ''RUBBER_C1'' 
 +| Initial bulk modulus ($k_0$)                            |''RUBBER_PENAL''
 +
 +===== MooneyRivlinHyperMaterial =====
 +
 +=== Description ===
 +
 +Mooney-Rivlin hyperelastic law, using a ''Cauchy'' stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.
 +
 +(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e.  $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.
 +
 +$$
 + W\left(I_1,I_2,J\right)  =  \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + C_2\left(\bar{I_2} - 3\right)+ \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right]
 +$$
 +
 +
 +
 +$$
 +U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right]
 +$$
 +
 +=== Parameters ===
 +^   Name                                                  ^  Metafor Code  ^
 +| Density                                                 |''MASS_DENSITY''|
 +| Mooney-Rivlin coefficient ($C_1$)                          | ''RUBBER_C1'' 
 +| Mooney-Rivlin coefficient ($C_2$)                          | ''RUBBER_C2'' 
 +| Initial bulk modulus ($k_0$)                            |''RUBBER_PENAL''
 +
  
 ===== NeoHookeanHyperPk2Material ===== ===== NeoHookeanHyperPk2Material =====
Line 7: Line 57:
 Neo-Hookean hyperelastic law, using a ''PK2'' tensor. Neo-Hookean hyperelastic law, using a ''PK2'' tensor.
  
-The potential per unit volume is calculated based on the average compressibility over the element, ($\theta$): +The potential per unit volume is computed based on the average compressibility over the element, ($\theta$): 
  
 $$ $$
Line 13: Line 63:
 $$ $$
  
-The deviatoric potential is calculated based on a Cauchy tensor with a unit determinant:+The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:
  
 $$ $$
Line 24: Line 74:
 | Density                                                  ''MASS_DENSITY''  | | Density                                                  ''MASS_DENSITY''  |
 | Initial bulk modulus ($k_0$)                            |    ''HYPER_K0''    | | Initial bulk modulus ($k_0$)                            |    ''HYPER_K0''    |
-| Initial shear modulus ($g_0$)                              ''HYPER_G0''    | +| Initial shear modulus ($g_0$)                              ''HYPER_G0''    |
  
 ===== LogarihtmicHyperPk2Material ===== ===== LogarihtmicHyperPk2Material =====
Line 32: Line 82:
 Logarithmic hyperelastic law, using a ''PK2'' tensor. Logarithmic hyperelastic law, using a ''PK2'' tensor.
  
-The potential per unit volume is calculated based on the average compressibility of the element, ($q$): +The potential per unit volume is computed based on the average compressibility of the element, ($q$): 
  
 $$ $$
Line 38: Line 88:
 $$ $$
  
-The deviatoric potential is calculated based on a Cauchy tensor with a unit determinant:+The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:
  
 $$ $$
Line 56: Line 106:
 Logarithmic hyperelastic law, using a ''PK2'' tensor. Logarithmic hyperelastic law, using a ''PK2'' tensor.
  
-The potential per unit volume is calculated based on the average compressibility of the element, ($\theta$): +The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): 
  
 $$ $$
Line 62: Line 112:
 $$ $$
  
-The deviatoric potential is calculated based on a Cauchy tensor with a unit determinant:+The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:
  
 $$ $$
Line 82: Line 132:
 Hyperelastic law, using a ''PK2'' tensor. Its function applied on the strain spectral decomposition is a user law. Hyperelastic law, using a ''PK2'' tensor. Its function applied on the strain spectral decomposition is a user law.
  
-The potential per unit volume is calculated based on the average compressibility of the element, ($\theta$): +The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): 
  
 $$ $$
Line 88: Line 138:
 $$ $$
  
-The deviatoric potential is calculated based on a hyperelastic user function defined in [[doc:user:elements:volumes:hyper_viscoelastic]].+The deviatoric potential is computed based on a hyperelastic user function defined in [[doc:user:elements:volumes:hyper_viscoelastic]].
  
 === Parameters === === Parameters ===
Line 106: Line 156:
 Each branch has its behavior corresponding to a viscoelastic law, supplied by the user. Each branch has its behavior corresponding to a viscoelastic law, supplied by the user.
  
-The potential per unit volume is calculated based on the average compressibility of the element, ($\theta$): +The potential per unit volume is computed based on the average compressibility of the element, ($\theta$): 
  
 $$ $$
Line 112: Line 162:
 $$ $$
  
-The deviatoric potential is calculated based on the viscoelastic laws :+The deviatoric potential is computed based on the viscoelastic laws :
  
 $$ $$
doc/user/elements/volumes/hyper_materials.txt · Last modified: 2024/05/02 11:15 by radermecker

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki