Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_dev_potential

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
doc:user:elements:volumes:hyper_dev_potential [2026/01/15 13:50] – [CombinedElasticPotential] vanhulledoc:user:elements:volumes:hyper_dev_potential [2026/01/15 14:12] (current) – [MaxwellBranch] vanhulle
Line 168: Line 168:
  
 === Description === === Description ===
-In the rheological analogy, the generalized Maxwell visco-elastic model consists in a **main elastic potential** (main spring) put in parallel with several **Maxwell branches** (MaxwellBranch), which are made of a spring and a damper in series.+In the rheological analogy, the generalized Maxwell visco-elastic model consists in a **main elastic potential** (main spring) put in parallel with several **Maxwell branches**, which are made of a spring and a damper in series. Each Maxwell branch must be defined using the **MaxwellBranch material law**.
  
 {{ :doc:user:references:materials:maxwellgrid.png?400 |}} {{ :doc:user:references:materials:maxwellgrid.png?400 |}}
Line 178: Line 178:
 where $\boldsymbol{\sigma}_0$ is the stress in the main elastic branch and $\mathbf{h}_j$ is the non-equilibrium stress from Maxwell branch $j$. where $\boldsymbol{\sigma}_0$ is the stress in the main elastic branch and $\mathbf{h}_j$ is the non-equilibrium stress from Maxwell branch $j$.
  
 +The non-equilibrium stress in the current configuration in a Maxwell branch writes (trapezoidal integration)
 +$$
 +    \begin{align*}
 +    \mathbf{h}_j^{n+1} 
 +    \approx e^{-\frac{\Delta t}{\tau_j}} \frac{1}{\Delta J} \Delta F ~\mathbf{h}_j^{n}(\Delta F)^T + \Gamma_j \frac{1 - e^{-\frac{\Delta t}{\tau_j}}}{\frac{\Delta t}{\tau_j}}\left[ \boldsymbol{\sigma}^{n+1}_0 - \frac{1}{\Delta J} \Delta F ~~\boldsymbol{\sigma}^{n}_0(\Delta F)^T\right]
 +    \end{align*}
 +$$
 +where $\Delta \mathbf{F} = \mathbf{F}^{n+1}\left(\mathbf{F}^{n}\right)^{-1}$ and $\Delta J = \text{det}\left(\Delta \mathbf{F}\right)$.
  
-=== Parameters ===+=== Parameters (GeneralizedMaxwellHyperPotential) === 
 +^   Name                                                  ^  Metafor Code  ^ Dependency ^ 
 +| Number of the main elastic potential $\sigma_0$  |  ''HYPER_MAIN_POTENTIAL_NO''  |  -  | 
 +| Array of numbers defining the Maxwell branches [1, 2, ...]  |  ''HYPER_MAXWELL_BRANCH_NUMS''  |  -  |
  
 +=== Parameters (MaxwellBranch) ===
 +^   Name                                                  ^  Metafor Code  ^ Dependency ^
 +| Normalized Maxwell stiffness $\Gamma$  |  ''HYPER_MAXWELL_GAMMA''  |  ''TO/TM''  |
 +| Relaxation time $\tau$  |  ''HYPER_VE_TAU''  |  ''TO/TM''  |
 +| Boolean parameter, use trapezoidal integration (=False, default) or mid-point rule (=True)  |  ''HYPER_MAXWELL_USE_MPR''  |  -  |
  
-==== MaxwellBranch ==== 
-=== Description === 
  
  
doc/user/elements/volumes/hyper_dev_potential.1768481446.txt.gz · Last modified: by vanhulle

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki