Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:hyper_dev_potential

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
doc:user:elements:volumes:hyper_dev_potential [2026/01/15 13:17] – [BonetBurtonHyperPotential] vanhulledoc:user:elements:volumes:hyper_dev_potential [2026/01/15 14:12] (current) – [MaxwellBranch] vanhulle
Line 162: Line 162:
  
  
-====== Rheological Laws ====== +====== Visco-elastic Potentials ====== 
-{{:doc:user:ico-worker.png?25|Under construction}} Other laws will follow with the addition of visco-elasticity.+ 
 + 
 +===== GeneralizedMaxwellHyperPotential =====
  
-===== CombinedElasticPotential ===== 
 === Description === === Description ===
-The ''CombinedElasticPotential'' material law allows to combine two deviatoric hyperelastic potentials together as+In the rheological analogy, the generalized Maxwell visco-elastic model consists in a **main elastic potential** (main spring) put in parallel with several **Maxwell branches**, which are made of a spring and a damper in series. Each Maxwell branch must be defined using the **MaxwellBranch material law**. 
 + 
 +{{ :doc:user:references:materials:maxwellgrid.png?400 |}} 
 + 
 +The Cauchy stress in the current configuration writes
 $$ $$
-\boldsymbol{\sigma}^= \boldsymbol{\sigma}^e_1 + \boldsymbol{\sigma}^e_2+\boldsymbol{\sigma}^{n+1} = \boldsymbol{\sigma}^{n+1}_0+ \sum_{j=1}^N \mathbf{h}_j^{n+1},
 $$ $$
-This can be illustrated using the following analogous rheological element +where $\boldsymbol{\sigma}_0$ is the stress in the main elastic branch and $\mathbf{h}_j$ is the non-equilibrium stress from Maxwell branch $j$. 
-{{ :doc:user:references:materials:rheoelast.png?300 |}}+ 
 +The non-equilibrium stress in the current configuration in a Maxwell branch writes (trapezoidal integration) 
 +$$ 
 +    \begin{align*} 
 +    \mathbf{h}_j^{n+1 
 +    \approx e^{-\frac{\Delta t}{\tau_j}} \frac{1}{\Delta J} \Delta F ~\mathbf{h}_j^{n}(\Delta F)^T + \Gamma_j \frac{1 - e^{-\frac{\Delta t}{\tau_j}}}{\frac{\Delta t}{\tau_j}}\left[ \boldsymbol{\sigma}^{n+1}_0 - \frac{1}{\Delta J} \Delta F ~~\boldsymbol{\sigma}^{n}_0(\Delta F)^T\right] 
 +    \end{align*} 
 +$$ 
 +where $\Delta \mathbf{F} = \mathbf{F}^{n+1}\left(\mathbf{F}^{n}\right)^{-1}$ and $\Delta J = \text{det}\left(\Delta \mathbf{F}\right)$. 
 + 
 +=== Parameters (GeneralizedMaxwellHyperPotential) === 
 +^   Name                                                  ^  Metafor Code  ^ Dependency ^ 
 +| Number of the main elastic potential $\sigma_0$  |  ''HYPER_MAIN_POTENTIAL_NO''  |  -  | 
 +| Array of numbers defining the Maxwell branches [1, 2, ...]  |  ''HYPER_MAXWELL_BRANCH_NUMS''  |  -  | 
 + 
 +=== Parameters (MaxwellBranch) === 
 +^   Name                                                  ^  Metafor Code  ^ Dependency ^ 
 +| Normalized Maxwell stiffness $\Gamma$  |  ''HYPER_MAXWELL_GAMMA''  |  ''TO/TM'' 
 +| Relaxation time $\tau$  |  ''HYPER_VE_TAU''  |  ''TO/TM'' 
 +| Boolean parameter, use trapezoidal integration (=False, default) or mid-point rule (=True)  |  ''HYPER_MAXWELL_USE_MPR''  |  -  | 
  
-The main purpose of this element is to create anisotropic hyperelastic materials, as they are often composed of an isotropic (generally a Neo-Hookean) matrix component and an anisotropic fibrous component (see [[doc:user:elements:volumes:hyper_functionbased|anisotropic material examples]]). Nonetheless, this material law can also be used to add two or more deviatoric potentials, since ''CombinedElasticPotential'' can combine with itself. 
  
doc/user/elements/volumes/hyper_dev_potential.1768479439.txt.gz · Last modified: by vanhulle

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki