Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:damage

Damage

The Damage class manages all damage evolution laws. When defining a new law, the following must be defined:

  • The stress associated to damage which is taken into account in the plastic criterion $ \sigma_{damage} $
  • The evolution of the damage variable $ D $
  • The softening of the elastic limit $\omega $

Laws in Metafor:

GursonTvergaardDamage

Description

  • Stress associated to damage, $ \sigma_{damage}$:

$$ \sigma_{damage}=K\left[\dfrac{\dot{\bar{\varepsilon}}^{vp}\bar{\sigma}\left[1-D\right]}{\bar{\sigma}+p\dfrac{\partial f}{\partial p}}\right]^{m}\left[\bar{\varepsilon}^{vp}\right]^{n} $$

  • Softening of elastic limit $ \omega $:

$$ \omega \left(D,p,\sigma_{yield}\right) = \sqrt{1-2\dfrac{D}{D_{ult}}\cosh\left(\dfrac{3\alpha p}{\sigma_{yield}}\right)+\left[\dfrac{D}{D_{ult}}\right]^2} $$

  • Evolution of the damage variable $ D $:

\begin{align} \dot{D}&=\dfrac{D_{N}}{s_N\sqrt{2\pi}}\exp\left[-\dfrac{1}{2}\left[\dfrac{\bar{\varepsilon}^{vp}-\varepsilon_N}{s_N}\right]^2\right]\dot{\bar{\varepsilon}}^{vp}+\left[1-D\right]\text{tr}\left(\mathbf{D^{irr}}\right) &\text{ si }D<D_{crit} \notag \\ &=\dfrac{D_{ult}-D_{crit}}{\Delta \varepsilon}\dot{\bar{\varepsilon}}^{vp}& \text{ si } D>D_{crit} \notag \end{align}

Parameters

Name Metafor Code Dependency
Viscosity ($ K $) GURSON_K -
Sensitivity to strain rate ($ m $) GURSON_M -
Hardening of viscous terms ($ n $) GURSON_N -
Damage value at failure ($D_{ult}$) GURSON_D_ULT -
Damage value at coalescence ($D_{crit}$) GURSON_DCRIT -
Parameter of nucleation law ($\alpha$) GURSON_ALPHA -
Maximal number of nucleated microvoids ($D_{N}$) GURSON_D_N -
Variance of the nucleation distribution function ($s_N$) GURSON_S_N -
Average strain at nucleation ($\varepsilon_N$) GURSON_EPS_N -
Coalescence parameter $\Delta\varepsilon$ GURSON_DELTA_EPS -

KhaleelDamage

Description

  • Stress associated to damage, $ \sigma_{damage}$:

$$ \sigma_{damage}=K\left(1-\sqrt{D}\right)\left[\dfrac{\dot{\bar{\varepsilon}}^{vp}\bar{\sigma}\left[1-D\right]}{\bar{\sigma}+p\dfrac{\partial f}{\partial p}}\right]^{m}\left[\bar{\varepsilon}^{vp}\right]^{n} $$

  • Softening of elastic limit $ \omega $:

$$ \omega \left(D,p,\sigma_{yield}\right) = \left(1-\sqrt{D}\right) - \dfrac{\alpha_\omega 3p}{\sigma_{yield}} $$

  • Evolution of the damage variable $ D $:

$$ \begin{align} \dot{D}&=B\sigma_{vp}^v \left(\bar{\varepsilon}^{vp}\right)^b \dot{\bar{\varepsilon}}^{vp}+\left[1-D\right]E_v\eta\left(p\right)\text{tr}\left(\mathbf{D^{irr}}\right)&\text{ si }D<D_{crit} \notag \\ &=B\sigma_{vp}^v \left(\bar{\varepsilon}^{vp}\right)^b \dot{\bar{\varepsilon}}^{vp}+\left[1-D\right]F E_v\eta\left(p\right)\text{tr}\left(\mathbf{D^{irr}}\right)&\text{ si }D>D_{crit} \notag \end{align} $$ where $\eta\left(p\right)$ is defined as:

$$ \eta = \dfrac{3}{2} \dfrac{m+1}{m} \sinh\left(2\dfrac{2-m}{2+m}\dfrac{p}{\bar{\sigma}}\right) $$

Parameters

Name Metafor Code Dependency
Viscosity ($ K $) KHALEEL_K -
Sensitivity to strain rate ($ m $) KHALEEL_M -
Hardening of viscous terms ($ n $) KHALEEL_N -
Damage value at failure ($D_{ult}$) KHALEEL_D_ULT -
Damage value at coalescence ($D_{crit}$) KHALEEL_DCRIT -
Sensitivity to pressure ($\alpha_\omega$) KHALEEL_ALPHA -
First cavity nucleation parameter ($ B $) KHALEEL_BIGB -
Second cavity nucleation parameter ($ b $) KHALEEL_SMALLB -
Cavity growth parameter ($ E_v $) KHALEEL_EV -
Cavity coalescence parameter ($ F $) KHALEEL_FACT_EV -

AdamKhaleelDamage

Description

  • Stress associated to damage, $ \sigma_{damage}$:

$$ \sigma_{damage}=K\left(1-\sqrt{D}\right)\left[\dfrac{\dot{\bar{\varepsilon}}^{vp}\bar{\sigma}\left[1-D\right]}{\bar{\sigma}+p\dfrac{\partial f}{\partial p}}\right]^{m}\left[\bar{\varepsilon}^{vp}\right]^{n} $$

  • Softening of elastic limit $ \omega $:

$$ \begin{align*} \omega \left(D,p,\sigma_{yield}\right) &= 1-\sqrt{D}\left(1+\dfrac{\alpha_\omega 3|p|}{\sigma_{yield}}\right) &\text{ si } |p| > \dfrac{p_{lim}}{PLIM} \\ &= \sqrt{\dfrac{3}{2}}\dfrac{\zeta+\sqrt{\beta^2-p^2}}{\sigma_{yield}} &\text{ si } |p| < \dfrac{p_{lim}}{PLIM} \end{align*} $$ where $$ \begin{eqnarray*} &p_{lim} &= \dfrac{1-\sqrt{D}}{\sqrt{D}} \dfrac{\sigma_{yield}}{3\alpha_\omega} \\ &\zeta &= \sqrt{\dfrac{2}{3}} \left(1 - \left(1+\dfrac{3\alpha p_{lim}}{\sigma_{yield}PLIM}\right) \sqrt{D}\right) \sigma_{yield} - \sqrt{\dfrac{3}{2}} \dfrac{p_{lim}}{3\alpha\sqrt{D}PLIM} \\ &\beta &= \sqrt{ \left(\dfrac{p_{lim}}{PLIM}\right)^2 + \dfrac{3}{2}\left(\dfrac{p_{lim}}{3\alpha\sqrt{D}PLIM}\right)^2} \end{eqnarray*} $$ * Evolution of the damage variable $ D $:

$$\begin{align} \dot{D}&=B\sigma_{vp}^v \left(\bar{\varepsilon}^{vp}\right)^b \dot{\bar{\varepsilon}}^{vp}+\left[1-D\right]E_v\eta\left(p\right)\text{tr}\left(\mathbf{D^{irr}}\right)&\text{ si }D<D_{crit} \notag \\ &=B\sigma_{vp}^v \left(\bar{\varepsilon}^{vp}\right)^b \dot{\bar{\varepsilon}}^{vp}+\left[1-D\right]F E_v\eta\left(p\right)\text{tr}\left(\mathbf{D^{irr}}\right)&\text{ si }D>D_{crit} \notag \end{align} $$ where $\eta\left(p\right)$ is defined as:

$$ \eta = \dfrac{3}{2} \dfrac{m+1}{m} \sinh\left(2\dfrac{2-m}{2+m}\dfrac{|p|}{\alpha_\eta\sigma_{yield}}\right) $$

Parameters

Name Metafor Code Dependency
Viscosity ($ K $) ADAM_K -
Sensitivity to strain rate ($ m $) ADAM_M -
Hardening of viscous terms ($ n $) ADAM_N -
Damage value at failure ($D_{ult}$) ADAM_D_ULT -
Damage value at coalescence ($D_{crit}$) ADAM_DCRIT -
Cavity growth parameter ($ E_v $) ADAM_EV -
Cavity coalescence parameter ($ F $) ADAM_FACT_EV -
Sensitivity to pressure ($\alpha_\omega$) ADAM_ALPHA -
First cavity nucleation parameter ($ B $) ADAM_BIGB -
Second cavity nucleation parameter ($ b $) ADAM_SMALLB -
Sensitivity of cavity growth to pressure ($ \alpha_\eta $) ADAM_ALPHA_ETA -
Parameter smoothing the viscoplastic criterion ($ PLIM $) ADAM_PLIM -
doc/user/elements/volumes/damage.txt · Last modified: 2018/11/13 17:38 by boman