Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:continuousdamage

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
doc:user:elements:volumes:continuousdamage [2014/09/30 16:04] jorisdoc:user:elements:volumes:continuousdamage [2021/04/09 11:35] (current) – [LinGeersContinuousDamage] tanaka
Line 9: Line 9:
 === Description === === Description ===
  
 +Lemaitre & Chaboche damage model [[doc:user:elements:volumes:continuousdamage#References|[1,2]]].
 $$ $$
-\dot D = \left(\dfrac{\bar \sigma^2 R_\nu}{2ES\left(1-D\right)^2}\right)^s \dot \varepsilon^{pl} \mbox{ si } \varepsilon^{pl} > \varepsilon^{pl}_D+\dot D = \left(\dfrac{\bar \sigma^2 R_\nu}{2ES\left(1-D\right)^2}\right)^s \dot \varepsilon^{pl} \mbox{, if } \varepsilon^{pl} > \varepsilon^{pl}_D \mbox{, and } \eta > \eta_D
 $$ $$
  
Line 19: Line 20:
 $$ $$
  
-where $ p $ is the pressure and $ \bar \sigma $ is Von Mises stress.+where $ p $ is the pressure$ \bar \sigma $ is Von Mises stress and $\eta$ is the stress triaxiality ratio.
  
 === Parameters === === Parameters ===
Line 29: Line 30:
 | Coefficient $ S $                                  |      ''LEMAITRE_BIG_S''      |     ''TO/TM''      | | Coefficient $ S $                                  |      ''LEMAITRE_BIG_S''      |     ''TO/TM''      |
 | Plastic strain threshold $ \varepsilon^{pl}_D $    |  ''LEMAITRE_EPL_THRESHOLD''  |     ''TO/TM''      | | Plastic strain threshold $ \varepsilon^{pl}_D $    |  ''LEMAITRE_EPL_THRESHOLD''  |     ''TO/TM''      |
 +| Triaxiality threshold $ \eta_D $    |  ''LEMAITRE_TRIAX_THRESHOLD''  |     ''TO/TM''      |
 ===== BoneRemodContinousDamage ===== ===== BoneRemodContinousDamage =====
  
Line 152: Line 153:
  
 $$ $$
-\dot D = D_C\dfrac{\dot \varepsilon^{pl}}{\varepsilon^{pl}_f-\varepsilon^{pl}_D} \mbox{ si } \varepsilon^{pl} > \varepsilon^{pl}_D+\dot D = D_C\dfrac{\dot \varepsilon^{pl}}{\varepsilon^{pl}_f-\varepsilon^{pl}_D} \mbox{ if } \varepsilon^{pl} > \varepsilon^{pl}_D
 $$ $$
  
Line 194: Line 195:
  
 $$ $$
-D = 1 - \left(\dfrac{\kappa_i}{\kappa}\right)^{n_1} \left(\dfrac{\kappa-\kappa_i}{\kappa_c-\kappa_i}\right)^{n_2} \mbox{ si } \kappa_i\leq\kappa\leq\kappa_c+D = 1 - \left(\dfrac{\kappa_i}{\kappa}\right)^{n_1} \left(\dfrac{\kappa-\kappa_i}{\kappa_c-\kappa_i}\right)^{n_2} \mbox{ if } \kappa_i\leq\kappa\leq\kappa_c
 $$ $$
  
Line 212: Line 213:
 ^   Name         Metafor Code      Dependency ^  ^   Name         Metafor Code      Dependency ^ 
 | $ \beta $  |  ''GEERS_BETA''  |     ''TO/TM''      | | $ \beta $  |  ''GEERS_BETA''  |     ''TO/TM''      |
- 
  
  
Line 239: Line 239:
 \dot{\kappa} = C\left<1+A\dfrac{p}{\bar\sigma}\right> \left(\varepsilon^{pl}\right)^B \dot\varepsilon^{pl} \dot{\kappa} = C\left<1+A\dfrac{p}{\bar\sigma}\right> \left(\varepsilon^{pl}\right)^B \dot\varepsilon^{pl}
 $$ $$
-where $p$ is the pressure, and $ \overline{\sigma} $ the Von Mises stress. $\langle .\rangle$ are MacCaulay symbols( $\langle \alpha\rangle = \alpha $ if $ \alpha \ge 0 $ and $ 0 $ sinon)+where $p$ is the pressure, and $ \overline{\sigma} $ the Von Mises stress. $\langle .\rangle$ are Macaulay symbols( $\langle \alpha\rangle = \alpha $ if $ \alpha \ge 0 $ and $ 0 $ otherwise)
  
 $$ $$
Line 250: Line 250:
 | $ C $  |   ''GEERS_C''       ''TO/TM''      | | $ C $  |   ''GEERS_C''       ''TO/TM''      |
  
 +===== References =====
 +
 +[1] Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and
 +Technology 1985;107:9–83.
 +
 +[2] Chaboche JL. Description thermodynamique et phénoménologique de la viscoélasticité cyclique avec endommagement.
 +PhD Thesis, Université Pierre et Marie Curie, Paris VI, 1978.
 +
 +[3]
 +
 +[4]
doc/user/elements/volumes/continuousdamage.1412085856.txt.gz · Last modified: 2016/03/30 15:22 (external edit)

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki