Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:continuousdamage

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
doc:user:elements:volumes:continuousdamage [2014/09/30 16:04] jorisdoc:user:elements:volumes:continuousdamage [2021/04/09 11:33] – [LinGeersContinuousDamage] tanaka
Line 9: Line 9:
 === Description === === Description ===
  
 +Lemaitre & Chaboche damage model [[doc:user:elements:volumes:continuousdamage#References|[1,2]]].
 $$ $$
-\dot D = \left(\dfrac{\bar \sigma^2 R_\nu}{2ES\left(1-D\right)^2}\right)^s \dot \varepsilon^{pl} \mbox{ si } \varepsilon^{pl} > \varepsilon^{pl}_D+\dot D = \left(\dfrac{\bar \sigma^2 R_\nu}{2ES\left(1-D\right)^2}\right)^s \dot \varepsilon^{pl} \mbox{, if } \varepsilon^{pl} > \varepsilon^{pl}_D \mbox{, and } \eta > \eta_D
 $$ $$
  
Line 19: Line 20:
 $$ $$
  
-where $ p $ is the pressure and $ \bar \sigma $ is Von Mises stress.+where $ p $ is the pressure$ \bar \sigma $ is Von Mises stress and $\eta$ is the stress triaxiality ratio.
  
 === Parameters === === Parameters ===
Line 29: Line 30:
 | Coefficient $ S $                                  |      ''LEMAITRE_BIG_S''      |     ''TO/TM''      | | Coefficient $ S $                                  |      ''LEMAITRE_BIG_S''      |     ''TO/TM''      |
 | Plastic strain threshold $ \varepsilon^{pl}_D $    |  ''LEMAITRE_EPL_THRESHOLD''  |     ''TO/TM''      | | Plastic strain threshold $ \varepsilon^{pl}_D $    |  ''LEMAITRE_EPL_THRESHOLD''  |     ''TO/TM''      |
 +| Triaxiality threshold $ \eta_D $    |  ''LEMAITRE_TRIAX_THRESHOLD''  |     ''TO/TM''      |
 ===== BoneRemodContinousDamage ===== ===== BoneRemodContinousDamage =====
  
Line 152: Line 153:
  
 $$ $$
-\dot D = D_C\dfrac{\dot \varepsilon^{pl}}{\varepsilon^{pl}_f-\varepsilon^{pl}_D} \mbox{ si } \varepsilon^{pl} > \varepsilon^{pl}_D+\dot D = D_C\dfrac{\dot \varepsilon^{pl}}{\varepsilon^{pl}_f-\varepsilon^{pl}_D} \mbox{ if } \varepsilon^{pl} > \varepsilon^{pl}_D
 $$ $$
  
Line 194: Line 195:
  
 $$ $$
-D = 1 - \left(\dfrac{\kappa_i}{\kappa}\right)^{n_1} \left(\dfrac{\kappa-\kappa_i}{\kappa_c-\kappa_i}\right)^{n_2} \mbox{ si } \kappa_i\leq\kappa\leq\kappa_c+D = 1 - \left(\dfrac{\kappa_i}{\kappa}\right)^{n_1} \left(\dfrac{\kappa-\kappa_i}{\kappa_c-\kappa_i}\right)^{n_2} \mbox{ if } \kappa_i\leq\kappa\leq\kappa_c
 $$ $$
  
Line 212: Line 213:
 ^   Name         Metafor Code      Dependency ^  ^   Name         Metafor Code      Dependency ^ 
 | $ \beta $  |  ''GEERS_BETA''  |     ''TO/TM''      | | $ \beta $  |  ''GEERS_BETA''  |     ''TO/TM''      |
- 
  
  
Line 239: Line 239:
 \dot{\kappa} = C\left<1+A\dfrac{p}{\bar\sigma}\right> \left(\varepsilon^{pl}\right)^B \dot\varepsilon^{pl} \dot{\kappa} = C\left<1+A\dfrac{p}{\bar\sigma}\right> \left(\varepsilon^{pl}\right)^B \dot\varepsilon^{pl}
 $$ $$
-where $p$ is the pressure, and $ \overline{\sigma} $ the Von Mises stress. $\langle .\rangle$ are MacCaulay symbols( $\langle \alpha\rangle = \alpha $ if $ \alpha \ge 0 $ and $ 0 $ sinon)+where $p$ is the pressure, and $ \overline{\sigma} $ the Von Mises stress. $\langle .\rangle$ are MacCaulay symbols( $\langle \alpha\rangle = \alpha $ if $ \alpha \ge 0 $ and $ 0 $ otherwise)
  
 $$ $$
Line 250: Line 250:
 | $ C $  |   ''GEERS_C''       ''TO/TM''      | | $ C $  |   ''GEERS_C''       ''TO/TM''      |
  
 +===== References =====
 +
 +[1] Lemaitre J. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and
 +Technology 1985;107:9–83.
 +
 +[2] Chaboche JL. Description thermodynamique et phénoménologique de la viscoélasticité cyclique avec endommagement.
 +PhD Thesis, Université Pierre et Marie Curie, Paris VI, 1978.
 +
 +[3]
 +
 +[4]
doc/user/elements/volumes/continuousdamage.txt · Last modified: 2021/04/09 11:35 by tanaka

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki