Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:integration:scheme:dynimpl

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
doc:user:integration:scheme:dynimpl [2016/01/18 12:31] – [Generalized Midpoint Rule] papeleuxdoc:user:integration:scheme:dynimpl [2017/06/16 10:28] (current) papeleux
Line 71: Line 71:
    
  
 +==== Damped Alpha-Generalized family ==== 
 +Adding damping forces to the Alpha-Generalized time integration scheme family allow user to dissipate energy in a regulated way. According to the reference below, damping forces can be balanced between previous and current time as others (internal or external) forces through $\alpha_F$ parameter. The global system is then written by :
 +
 +$$(1-\alpha_M) \boldsymbol{F}^{\text{inert}}(t^{n+1}) + \alpha_M \boldsymbol{F}^{\text{inert}}(t^n) + (1-\alpha_F) \boldsymbol{F}^{\text{damp}}(t^{n+1}) + \alpha_F \boldsymbol{F}^{\text{damp}}(t^n)$$
 +$$+ (1-\alpha_F) \boldsymbol{F}^{\text{int}}(t^{n+1}) + \alpha_F \boldsymbol{F}^{\text{int}}(t^n)
 + = (1-\alpha_F) \boldsymbol{F}^{\text{ext}}(t^{n+1}) + \alpha_F \boldsymbol{F}^{\text{ext}}(t^n)$$
 +
 +where the damping forces are computed proportional to velocities :
 +$$ \boldsymbol{F}^{\text{damp}} = \boldsymbol{C} * v $$
 +
 +According to ref2 (chapter 3), an easy way to build a diagonal damping matrix is to compute a ponderated sum of the mass and stiffness matrices :
 +$$\boldsymbol{C} =  a_k \boldsymbol{K} + a_m \boldsymbol{M}$$
 +
 +The modal damping factor corresponding to each eigen pulsation $\omega_{0r} = 2 \pi \phi$:
 +$$\epsilon_r=\frac{1}{2}(a_k \omega_{0r} + \frac{a_m}{\omega_{0r}} )$$
 +
 +telling us that the mass damping factor $a_m$ will induice damping on lowest eigen frequencies and that the stiff damping factor $a_k$ will induce damping on the higher eigen frequencies.
 +
 +<code>
 +ref 1 : "The analysis of the Generalized-$\alpha$ method for non linear dynamic problems" -
 +        S.Erlicher, L.Bonaventura, O.S.Bursi -  Computanional Mechanics 28 (2002) 83-104
 +ref 2 : "Théorie des vibrations - Application à la dynamique des structures" -
 +         M.Géradin, D.Rixen - Editions Masson
 +</code>
 +=== Parameters to the scheme === 
 +  * Name of the scheme : ''DampedAlphaGeneralizedTimeIntegration''
 +  * Parameters : 
 +    * AlphaGeneralizedTimeIntegration parameters has to be defined as usual
 +    * update of the damping matrix managed through ''ti.setDampingMatrixUpdate(DMUxxx)''
 +      * DMUINIT : Damping matrix computed on initial configuration only
 +      * DMUPERSTAGE : Damping matrix computed at each stage change
 +      * DMUPERSTEP : Damping matrix computed at the beginning of each time step (base on previous equilibrated solution to avoid need of stiffness computation)
 +    * Mass Damping Factor and Stiffness Damping Factor are defined though the [[doc:user:elements:volumes:volumeelement?&#parameters|element properties]] (''DAMPSTIFF'',''DAMPMASS''). Parameters can depend of time.
 +        
 ==== Generalized Midpoint Rule ====  ==== Generalized Midpoint Rule ==== 
  
Line 195: Line 229:
  
 <code> <code>
-ti = AlphaGeneralizedIntegration(metafor)+ti = AlphaGeneralizedTimeIntegration(metafor)
 ti.setAlphaM(_AlphaM) ti.setAlphaM(_AlphaM)
 ti.setAlphaF(_AlphaF) ti.setAlphaF(_AlphaF)
doc/user/integration/scheme/dynimpl.1453116695.txt.gz · Last modified: 2016/03/30 15:22 (external edit)

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki