Loading [MathJax]/jax/output/CommonHTML/jax.js

Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:integration:scheme:dynimpl

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
doc:user:integration:scheme:dynimpl [2016/03/30 15:23] – external edit 127.0.0.1doc:user:integration:scheme:dynimpl [2017/06/16 10:28] (current) papeleux
Line 82: Line 82:
  
 According to ref2 (chapter 3), an easy way to build a diagonal damping matrix is to compute a ponderated sum of the mass and stiffness matrices : According to ref2 (chapter 3), an easy way to build a diagonal damping matrix is to compute a ponderated sum of the mass and stiffness matrices :
-$$\boldsymbol{C} =  a_m \boldsymbol{M} + a_k \boldsymbol{K}$$+$$\boldsymbol{C} =  a_k \boldsymbol{K} + a_m \boldsymbol{M}$$
  
-The modal damping factor corresponding to each eigen pulsation ω0r: +The modal damping factor corresponding to each eigen pulsation $\omega_{0r} = 2 \pi \phi$: 
-$$\epsilon_r=\frac{1}{2}(a_m \omega_{0r} + \frac{a_k}{\omega_{0r}} )$$+$$\epsilon_r=\frac{1}{2}(a_k \omega_{0r} + \frac{a_m}{\omega_{0r}} )$$
  
 telling us that the mass damping factor am will induice damping on lowest eigen frequencies and that the stiff damping factor ak will induce damping on the higher eigen frequencies. telling us that the mass damping factor am will induice damping on lowest eigen frequencies and that the stiff damping factor ak will induce damping on the higher eigen frequencies.
doc/user/integration/scheme/dynimpl.1459344184.txt.gz · Last modified: by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki