doc:user:integration:scheme:dynimpl
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
doc:user:integration:scheme:dynimpl [2015/10/09 16:54] – [New Metafor Version > 2422] wautelet | doc:user:integration:scheme:dynimpl [2017/06/16 10:28] (current) – papeleux | ||
---|---|---|---|
Line 71: | Line 71: | ||
+ | ==== Damped Alpha-Generalized family ==== | ||
+ | Adding damping forces to the Alpha-Generalized time integration scheme family allow user to dissipate energy in a regulated way. According to the reference below, damping forces can be balanced between previous and current time as others (internal or external) forces through αF parameter. The global system is then written by : | ||
+ | |||
+ | (1-\alpha_M) \boldsymbol{F}^{\text{inert}}(t^{n+1}) + \alpha_M \boldsymbol{F}^{\text{inert}}(t^n) + (1-\alpha_F) \boldsymbol{F}^{\text{damp}}(t^{n+1}) + \alpha_F \boldsymbol{F}^{\text{damp}}(t^n) | ||
+ | $$+ (1-\alpha_F) \boldsymbol{F}^{\text{int}}(t^{n+1}) + \alpha_F \boldsymbol{F}^{\text{int}}(t^n) | ||
+ | = (1-\alpha_F) \boldsymbol{F}^{\text{ext}}(t^{n+1}) + \alpha_F \boldsymbol{F}^{\text{ext}}(t^n)$$ | ||
+ | |||
+ | where the damping forces are computed proportional to velocities : | ||
+ | \boldsymbol{F}^{\text{damp}} = \boldsymbol{C} * v | ||
+ | |||
+ | According to ref2 (chapter 3), an easy way to build a diagonal damping matrix is to compute a ponderated sum of the mass and stiffness matrices : | ||
+ | \boldsymbol{C} = a_k \boldsymbol{K} + a_m \boldsymbol{M} | ||
+ | |||
+ | The modal damping factor corresponding to each eigen pulsation \omega_{0r} = 2 \pi \phi: | ||
+ | \epsilon_r=\frac{1}{2}(a_k \omega_{0r} + \frac{a_m}{\omega_{0r}} ) | ||
+ | |||
+ | telling us that the mass damping factor a_m will induice damping on lowest eigen frequencies and that the stiff damping factor a_k will induce damping on the higher eigen frequencies. | ||
+ | |||
+ | < | ||
+ | ref 1 : "The analysis of the Generalized-\alpha method for non linear dynamic problems" | ||
+ | S.Erlicher, L.Bonaventura, | ||
+ | ref 2 : " | ||
+ | | ||
+ | </ | ||
+ | === Parameters to the scheme === | ||
+ | * Name of the scheme : '' | ||
+ | * Parameters : | ||
+ | * AlphaGeneralizedTimeIntegration parameters has to be defined as usual | ||
+ | * update of the damping matrix managed through '' | ||
+ | * DMUINIT : Damping matrix computed on initial configuration only | ||
+ | * DMUPERSTAGE : Damping matrix computed at each stage change | ||
+ | * DMUPERSTEP : Damping matrix computed at the beginning of each time step (base on previous equilibrated solution to avoid need of stiffness computation) | ||
+ | * Mass Damping Factor and Stiffness Damping Factor are defined though the [[doc: | ||
+ | | ||
==== Generalized Midpoint Rule ==== | ==== Generalized Midpoint Rule ==== | ||
- | The equilibrium | + | The equilibrium |
\boldsymbol{F}^{\text{inert}}(t^{n+\theta}) + \boldsymbol{F}^{\text{int}}(t^{n+\theta})= \boldsymbol{F}^{\text{ext}}(t^{n+\theta}) | \boldsymbol{F}^{\text{inert}}(t^{n+\theta}) + \boldsymbol{F}^{\text{int}}(t^{n+\theta})= \boldsymbol{F}^{\text{ext}}(t^{n+\theta}) | ||
Line 173: | Line 207: | ||
(see [[doc: | (see [[doc: | ||
- | ==== New Metafor Version > 2422 ==== | + | === New Metafor Version > 2422 === |
- | === Consistent Time Integration (EDMA or EDMC) === | + | == Consistent Time Integration (EMCA or EDMC) == |
< | < | ||
Line 182: | Line 216: | ||
</ | </ | ||
- | === Chung Hulbert === | + | == Generalized Midpoint Rule == |
< | < | ||
- | ti = ChExplicitTimeIntegration(metafor) | + | ti = MpgTimeIntegration(metafor) |
- | ti.setRhoB(_rhoB) | + | ti.setTheta(_theta) |
metafor.setTimeIntegration(ti) | metafor.setTimeIntegration(ti) | ||
</ | </ | ||
- | The parameter "_rhoB" is the spectral radius at bifurcation point ([0, 1]). The default value is 0.8182. | + | The parameter "_theta" is defined above. The default value is 1.1. |
- | === Tchamwa === | + | == Alpha Generalized Family |
< | < | ||
- | ti = TchamwaTimeIntegration(metafor) | + | ti = AlphaGeneralizedTimeIntegration(metafor) |
- | ti.setRhoB(_rhoB) | + | ti.setAlphaM(_AlphaM) |
+ | ti.setAlphaF(_AlphaF) | ||
+ | ti.setBeta0(_Beta0) | ||
+ | ti.setGamma0(_Gamma0) | ||
metafor.setTimeIntegration(ti) | metafor.setTimeIntegration(ti) | ||
</ | </ | ||
- | The parameter | + | The parameters |
Useful parameters : see [[quasistatique|quasi-statique]]. | Useful parameters : see [[quasistatique|quasi-statique]]. |
doc/user/integration/scheme/dynimpl.1444402456.txt.gz · Last modified: (external edit)