Processing math: 100%

Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:integration:scheme:dynexpl

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
doc:user:integration:scheme:dynexpl [2013/07/12 15:23] – created jorisdoc:user:integration:scheme:dynexpl [2022/12/21 11:35] (current) – [New Metafor Version > 2422] boman
Line 1: Line 1:
 +====== Explicit dynamic integration schemes ======
  
 +===== Description =====
 +
 +The equilibrium equation between internal forces Fint, inertial forces Ma (where M is the diagonalized mass matrix and a the acceleration) and external forces Fext :
 +
 +Ma+Fint=Fext
 +
 +
 +==== Central difference method ====
 +
 +Relations between displacements x, velocities v and accelerations a are:
 +
 +v(tn+1/2)=v(tn1/2)+(tn+1tn)a(tn) \\
 +x(tn+1)=x(tn)+(tn+1tn)v(tn+1/2)
 +
 +The equilibrium equation becomes :
 +
 +a(tn+1)=(Fext(tn+1)Fint(tn+1))/M
 +
 +This scheme is conditionally stable (time step limited) and non dissipative.
 +
 +==== Alpha-generalized scheme ====
 +
 +Same relations as in the implicit [[dynimpl|alpha-generalized]] scheme, but with the parameter used to weight internal and external forces equal to 1, leading to :
 + 
 +(1αM)a(tn+1)+αMa(tn)=Fext(tn)Fint(tn)M
 +
 +Relations between displacements x, velocities v and accelerations a are:
 +
 +x(tn+1)=x(tn)+(tn+1tn)v(tn)+(tn+1tn)2((0.5β)a(tn)+βa(tn+1))
 +v(tn+1)=v(tn)+(tn+1tn)(1γ)a(tn)+γa(tn+1)
 +
 +Specific values leading to an optimal numerical dissipation are given as function of the spectral radius ρβ (''MDR_ECHR'') for a bifurcation frequency (a spectral radius equal to 1 leads to a conservative algorithm when a spectral radius lower than 1 leads to a dissipative one ((see real parameters)):
 +
 +αM=(2ρβ1)/(1+ρβ)\\
 +γ=3/2αM\\
 +β=53ρβ(1+ρβ)2(2ρβ)
 +
 +Conditionally stable.
 +
 +==== Tchamwa Scheme ====
 +
 +
 +
 +Explicit algorithm where numerical dissipation is monitored by the parameter ϕ
 +
 +Equilibrium computed with
 +
 +a(tn+1)=Fext(tn+1)Fint(tn+1)M
 +
 +Relations between displacements x, velocities v and accelerations a are:
 +
 +x(tn+1)=x(tn)+(tn+1tn)v(tn)+ϕ(tn+1tn)2a(tn)\\
 +v(tn+1)=v(tn)+(tn+1tn)a(tn)
 +
 +Stability guaranteed for  ϕ1 and high frequencies killed over a single time step for \phi = 2$. the scheme is of : 
 +  * second order for ϕ=1 (no numerical dissipation) 
 +  * first order for ϕ>1 (numerical dissipation) 
 +
 +Relation between ϕ and spectral radius for the bifurcation ρβ (user parameter ''MDR_ECHR'') is:
 +  * ϕ=2(1ρ1/2β)(1ρβ) if ρβ<1
 +  * ϕ=1 if ρβ=1
 +
 +===== Input file =====
 +
 +See [[dynimpl|dynamic implicit]] scheme for definition of density and initial velocities.
 +
 +==== Old Metafor Version <= 2422 ====
 +
 +=== Choosing the algorithm ===
 +
 +^       Scheme          ''MDE_NDYN''  ^  ''MDR_ECHR''  ^
 +| Certered difference  |              |                |
 +| Chung Hulbert        |              |              |
 +| Tchamwa              |              |              |
 +
 +(see [[doc:user:integration:general:parameters]])
 +
 +==== New Metafor Version > 2422 ====
 +
 +=== Centered Difference ===
 +
 +<code>
 +ti = CentralDifferenceTimeIntegration(metafor)
 +metafor.setTimeIntegration(ti)
 +</code>
 +
 +=== Chung Hulbert ===
 +
 +<code>
 +ti = ChExplicitTimeIntegration(metafor)
 +ti.setRhoB(_rhoB)
 +metafor.setTimeIntegration(ti)
 +</code>
 +
 +The parameter ''_rhoB'' is the spectral radius at bifurcation point ([0, 1]). The default value is 0.8182.
 +
 +=== Tchamwa === 
 +
 +<code>
 +ti = TchamwaExplicitTimeIntegration(metafor)
 +ti.setRhoB(_rhoB)
 +metafor.setTimeIntegration(ti)
 +</code>
 +
 +The parameter ''_rhoB'' is the spectral radius at bifurcation point ([0, 1]). The default value is 0.8182.
 +
 +Other parameters : see [[quasistatique]]

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki