Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:volumeelement

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
doc:user:elements:volumes:volumeelement [2016/03/30 15:23] – external edit 127.0.0.1doc:user:elements:volumes:volumeelement [2020/12/28 09:46] – [QuadTetraVolume3DElement] tanaka
Line 3: Line 3:
 ===== Introduction ===== ===== Introduction =====
  
-In this section, Metafor volume element are described. To them is associated a ''[[doc:user:elements:volumes:volumeinteraction|FieldApplicator]]'' interaction.+In this section, Metafor volume element are described. ''[[doc:user:elements:volumes:volumeinteraction|FieldApplicator]]'' interaction is associated to them.
  
 ===== Volume[2|3]DElement ===== ===== Volume[2|3]DElement =====
Line 9: Line 9:
 === Description === === Description ===
  
-''Volume2DElement'' and ''Volume3DElement'' are basic elements in Metafor. ''Volume2DElement'' is a quadrangle with 4 nodes in 2D, when ''Volume3DElement''is a hexaedron with 8 nodes in 3D. Each element has respectively 8 and 24 degrees of freedom.+''Volume2DElement'' and ''Volume3DElement'' are basic elements in Metafor. ''Volume2DElement'' is a quadrangle with 4 nodes in 2D, while ''Volume3DElement'' is a hexaedron with 8 nodes in 3D. Each element has respectively 8 and 24 degrees of freedom.
  
 By default, if $n$ is the degree of mechanical interpolation and $d$ the element dimension, the number of integration points in the deviatoric part of the stress field is $(n+1)^{d}$, unless stated otherwise with the definition of ''NIPDKSI'', ''NIPDETA'' or ''NIPDZETA'' (see [[#Parameters ]]). \\ For example, the interpolation of ''Volume2DElement'' is of the first degree ($n=1$), and it is a 2D element ($d=2$), leading to 4 integration points. By default, if $n$ is the degree of mechanical interpolation and $d$ the element dimension, the number of integration points in the deviatoric part of the stress field is $(n+1)^{d}$, unless stated otherwise with the definition of ''NIPDKSI'', ''NIPDETA'' or ''NIPDZETA'' (see [[#Parameters ]]). \\ For example, the interpolation of ''Volume2DElement'' is of the first degree ($n=1$), and it is a 2D element ($d=2$), leading to 4 integration points.
Line 101: Line 101:
 Quadratic, 6-nodes triangular element in 2D, 12 dofs. The standard formulation must be used (''CAUCHYMECHVOLINTMETH = VES_CMVIM_STD''). Quadratic, 6-nodes triangular element in 2D, 12 dofs. The standard formulation must be used (''CAUCHYMECHVOLINTMETH = VES_CMVIM_STD'').
  
-By default, stresses are integrate over 3 integration points in the deviatoric part.+By default, stresses are integrated over 3 integration points in the deviatoric part.
  
 __Remark__: To use these higher order elements, the mesh must be also defined as second or third degree.  __Remark__: To use these higher order elements, the mesh must be also defined as second or third degree. 
Line 109: Line 109:
 Quadratic, 10-nodes tetrahedron in 3D, 30 dofs. As with quadratic elements in 2D, the standard formulation must be used (''CAUCHYMECHVOLINTMETH = VES_CMVIM_STD''). Quadratic, 10-nodes tetrahedron in 3D, 30 dofs. As with quadratic elements in 2D, the standard formulation must be used (''CAUCHYMECHVOLINTMETH = VES_CMVIM_STD'').
  
-By default, stresses are integrate over 4 integration points in the deviatoric part.+By default, stresses are integrated over 4 integration points in the deviatoric part.
  
 __Remark__: To use these higher order elements, the mesh must be also defined as second or third degree.  __Remark__: To use these higher order elements, the mesh must be also defined as second or third degree. 
Line 147: Line 147:
 | ''TEAS'' | Transformation of [[doc:user:elements:volumes:elements_formulation#formulation_eas|EAS]] modes from the isoparametric space \\  =0 : Simo-Armero transformation (default) \\ =1 : Glaser-Armero transformation [do not use, still under development] |  -  | | ''TEAS'' | Transformation of [[doc:user:elements:volumes:elements_formulation#formulation_eas|EAS]] modes from the isoparametric space \\  =0 : Simo-Armero transformation (default) \\ =1 : Glaser-Armero transformation [do not use, still under development] |  -  |
 | ''EEAS'' | Extrapolation of [[doc:user:elements:volumes:elements_formulation#formulation_eas|EAS]] modes \\ =0 : modes set to 0 for each time step (safe but slow). \\ =1 : classical extrapolation (default) \\ =2 : initialization to the value corresponding to the previous step. \\ =3 : set to 0 for each iteration |  -  | | ''EEAS'' | Extrapolation of [[doc:user:elements:volumes:elements_formulation#formulation_eas|EAS]] modes \\ =0 : modes set to 0 for each time step (safe but slow). \\ =1 : classical extrapolation (default) \\ =2 : initialization to the value corresponding to the previous step. \\ =3 : set to 0 for each iteration |  -  |
-| ''PEAS'' | Accuracy of resolution of [[doc:user:elements:volumes:elements_formulation#formulation_eas|EAS]] modes (default: 1.0e-8)|  -  |+| ''PEAS'' | Accuracy of resolution of [[doc:user:elements:volumes:elements_formulation#formulation_eas|EAS]] modes (default: 1.0e-8) unfortunately NOT adimensional!!! \\ => = 1.0e-8 for "small tests" in mm \\ => = 1.0e-6 for "real tests" in mm \\ => = 1.0e-9 for "real tests" in m |  -  |
 | ''VERBOSE'' | (bool) Debug information concerning resolution of  [[doc:user:elements:volumes:elements_formulation#formulation_eas|EAS]] (default: false)|  -  | | ''VERBOSE'' | (bool) Debug information concerning resolution of  [[doc:user:elements:volumes:elements_formulation#formulation_eas|EAS]] (default: false)|  -  |
  
doc/user/elements/volumes/volumeelement.txt · Last modified: 2020/12/29 18:27 by tanaka

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki