Processing math: 100%

Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:fluid_iso_hypo_materials

This is an old revision of the document!


"Fluid" materials

FluidHypoMaterial

Description

Material law describing a non viscous fluid.

Stresses are computed with

σij=sij+δijp with sij=0 in a non viscous fluid.

The equation which associates pressure and volume is dP=KdVV where K is the bulk modulus.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY
Bulk Modulus BULK_MODULUS

NortonHoffHypoMaterial

Description

Norton-Hoff law descriding a viscous fluid.

Stresses are computed with σij=sij+pδij

where p is the hydrostatic pressure and sij the stress deviator tensor.

The stress deviator tensor (sij) is determined upon the strain rate deviator tensor (Dij) through the following equation

sij=2μDij(3 23Dwz.Dwz)m1

For a newtonian fluid : m=1sij=2μDij

Hydrostatic pressure is computed upon volume variation through the following eqation

dp=KdVV

where K is the bulk modulus and V the volume.

Parameters

Name Metafor Code Dependency
Viscosity parameter NORTON_MU TM
Bulk modulus BULK_MODULUS TM
Parameter m NORTON_M TM
Density MASS_DENSITY TM

NortonHoffPHypoMaterial

Description

This law is identical to NortonHoffHypoMaterial but it can account for the variation of the bulk modulus and the viscosity parameter with the hydrostatic pressure p.

The bulk modulus variation must be linear which is consistent with measurements made on oil used in cold rolling.
Both bulk modulus and the viscosity parameter are constant during a time step and are updated at the end of each time step. It is therefore important to assess the influence of the time step size. A time step too large might have an effect on the solution.

Parameters

Name Metafor Code Dependency
Viscosity parameter NORTON_MU TM/IF_P
Bulk modulus BULK_MODULUS TM/IF_P
Parameter m NORTON_M TM
Density MASS_DENSITY TM

Accounting for bulk modulus variation with pressure

self.p['k0']+self.p['dkdp']*pres

class MyBulkFunction(PythonDirectorOneParameterFunction):
    def __init__(self,_p):
        PythonDirectorOneParameterFunction.__init__(self)
        self.debugRefs()
        self.p      = _p

    def __del__(self):
        print "MyBulkFunction : __del__ begin\n"
        print "callToDestructor of MyBulkFunction not allowed."
        print "Add MyBulkFunction.__disown__()"
        exit(1)

    def evaluate(self, pres):
        if pres>=0.0: # pression positive en traction !
            return self.p['k0']
        else :       # pression négative en compression !
            return self.p['k0']+self.p['dkdp']*pres

    def computeDerivation(self, pres):
        if pres>=0.0:
            return 0.0
        else :
            return self.p['dkdp']
    bulkLaw  = MyBulkFunction(p) 
    #print "help(bulkLaw) = ", help(bulkLaw)

    materset = domain.getMaterialSet()
    materset.define(1,NortonHoffPHypoMaterial)
    materset(1).put(BULK_MODULUS     ,  1.0)
    materset(1).depend(BULK_MODULUS  ,  bulkLaw,     Field(IF_P))

TmNortonHoffHypoMaterial

Description

Norton-Hoff law including thermal aspects.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY
Bulk modulus BULK_MODULUS
Parameter m NORTON_M
Viscosity parameter NORTON_MU
Thermal expansion THERM_EXPANSION TO/TM
Conductivity CONDUCTIVITY TO/TM
Heat capacity HEAT_CAPACITY TO/TM
Dissipated thermoelastic power fraction DISSIP_TE -
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) DISSIP_TQ -
doc/user/elements/volumes/fluid_iso_hypo_materials.1459514561.txt.gz · Last modified: 2016/04/01 14:42 by carretta

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki