Processing math: 100%

Metafor

ULiege - Aerospace & Mechanical Engineering

User Tools

Site Tools


doc:user:elements:volumes:fluid_iso_hypo_materials

This is an old revision of the document!


"Fluid" materials

FluidHypoMaterial

Description

Material law describing a non viscous fluid.

Stresses are computed with

σij=sij+δijp with sij=0 in a non viscous fluid.

The equation which associates pressure and volume is dP=KdVV where K is the bulk modulus.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY
Bulk Modulus BULK_MODULUS

NortonHoffHypoMaterial

Description

Norton-Hoff law descriding a viscous fluid.

Stresses are computed with σij=sij+pδij

where p is the hydrostatic pressure and sij the stress deviator tensor.

The stress deviator tensor (sij) is determined upon the strain rate deviator tensor (Dij) through the following equation

sij=2μDij(3 23Dwz.Dwz)m1

For a newtonian fluid : m=1sij=2μDij

Hydrostatic pressure is computed upon volume variation through the following eqation

dp=KdVV

where K is the bulk modulus and V the volume.

Parameters

Name Metafor Code Dependency
Viscosity parameter NORTON_MU TM
Bulk modulus BULK_MODULUS TM
Parameter m NORTON_M TM
Density MASS_DENSITY TM

TmNortonHoffHypoMaterial

Description

Norton-Hoff law including thermal aspects.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY
Bulk modulus BULK_MODULUS
Parameter m NORTON_M
Viscosity parameter NORTON_MU
Thermal expansion THERM_EXPANSION TO/TM
Conductivity CONDUCTIVITY TO/TM
Heat capacity HEAT_CAPACITY TO/TM
Dissipated thermoelastic power fraction DISSIP_TE -
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) DISSIP_TQ -
doc/user/elements/volumes/fluid_iso_hypo_materials.1459511584.txt.gz · Last modified: 2016/04/01 13:53 by carretta

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki