This is an old revision of the document!
−Table of Contents
"Fluid" materials
FluidHypoMaterial
Description
Material law describing a non viscous fluid.
Stresses are computed with
σij=sij+δijp with sij=0 in a non viscous fluid.
The equation which associates pressure and volume is dP=−KdVV where K is the bulk modulus.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Density | MASS_DENSITY | |
Bulk Modulus | BULK_MODULUS |
NortonHoffHypoMaterial
Description
Norton-Hoff law descriding a viscous fluid.
Stresses are computed with σij=sij+pδij
where p is the hydrostatic pressure and sij the stress deviator tensor.
The stress deviator tensor (sij) is determined upon the strain rate deviator tensor (Dij) through the following equation
sij=2μDij(√3 √23Dwz.Dwz)m−1
Hydrostatic pressure is computed upon volume variation through the following eqation
dp=KdVV
where K is the bulk modulus and V the volume.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Viscosity parameter | NORTON_MU | TM |
Bulk modulus | BULK_MODULUS | TM |
Parameter m | NORTON_M | TM |
Density | MASS_DENSITY | TM |
TmNortonHoffHypoMaterial
Description
Norton-Hoff law including thermal aspects.
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Density | MASS_DENSITY | |
Bulk modulus | BULK_MODULUS | |
Parameter m | NORTON_M | |
Viscosity parameter | NORTON_MU | |
Thermal expansion | THERM_EXPANSION | TO/TM |
Conductivity | CONDUCTIVITY | TO/TM |
Heat capacity | HEAT_CAPACITY | TO/TM |
Dissipated thermoelastic power fraction | DISSIP_TE | - |
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | DISSIP_TQ | - |