RuptureCriterion
manages various failure criteria.
The critical value C (RUPT_CRIT_VALUE
) of a variable above which the element is broken.
The type of failure (RUPT_TYPE_CRIT
) are defined in the table below :
Name | Description |
---|---|
NOBREAK | Compute the criterion, but never break any element |
ONEBROKEN | Break an element when ONE integration point override the critical value |
ALLBROKEN | Break an element when ALL the integration points override the critical value |
MEANBROKEN | Break an element when the averaged value over the integration points override the critical value |
Name | Metafor Code | Dependency |
---|---|---|
Critical value | RUPT_CRIT_VALUE | - |
Type of failure | RUPT_TYPE_CRIT | - |
The element is broken if an InternalField
reaches a critical value. The critical InternalField
is defined with the following command, which must be added when defining the criterion:
rc.setInternalField(IF_EPL)
for a criterion based on a critical value of the equivalent plastic strain.
Four simple rupture criteria are gathered in one single family. In order to selected one of the criteria the parameter RUPT_OP_LAW
(only parameter in this criterion) need to be defined as: COCKROFT
, BROZZO
, AYADA
or RICE
. Then, the element is broken if the variable C reaches a critical value, which is defined in each case as:
Cockroft and Latham criterion (dimensional Value) : COCKROFT2
C=∫¯εp0σ1d¯εp
Cockroft and Latham criterion (adimensional value) : COCKROFT
C=∫¯εp0σ1¯σd¯εp
Brozzo criterion : BROZZO
C=∫¯εp02σ13(σ1−p)d¯εp
Ayada criterion : AYADA
C=∫¯εp0p¯σd¯εp
Rice and Tracey criterion : RICE
C=∫¯εp0exp(32p¯σ)d¯εp
Parameters
Name | Metafor Code | Dependency |
---|---|---|
Criterion | RUPT_OP_LAW | - |
Bao-Wierzbicki criterion [1]. The element is broken if the variable C, defined below, reaches a critical value:
C=∫εpl0dεplεf
where εf is defined as:
εf={∞if pJ2≤−13P1(pJ2+13)P2if −13<pJ2≤0P3(pJ2)2+P4pJ2+P5if 0<pJ2<0.4exp(P6pJ2)if pJ2>0.4
Name | Metafor Code | Dependency |
---|---|---|
P1 | RUPT_BAO_P1 | - |
P2 | RUPT_BAO_P2 | - |
P3 | RUPT_BAO_P3 | - |
P4 | RUPT_BAO_P4 | - |
P5 | RUPT_BAO_P5 | - |
P6 | RUPT_BAO_P6 | - |
Hancock and Mackenzie criterion [2]. The critical plastic strain εf is defined as:
εf=D1+D2exp(D3pJ2)
Name | Metafor Code | Dependency |
---|---|---|
D1 | RUPT_HANCOCK_D1 | - |
D2 | RUPT_HANCOCK_D2 | - |
D3 | RUPT_HANCOCK_D3 | - |
Johnson and Cook criterion [3]. The element is broken if the variable C, defined below, reaches a critical value: C=∫εpl0dεplεf
where εf is defined as:
εf=(D1+D2exp(D3pJ2))(1+D4ln˙εpl˙ε0)(1+D5T−TroomTmelt−Troom)
Name | Metafor Code | Dependency |
---|---|---|
D1 | RUPT_JC_D1 | - |
D2 | RUPT_JC_D2 | - |
D3 | RUPT_JC_D3 | - |
D4 | RUPT_JC_D4 | - |
D5 | RUPT_JC_D5 | - |
˙ε0 | RUPT_JC_EPSP0 | - |
Room temperature Troom | RUPT_JC_TROOM | - |
Melting temperature Tmelt | RUPT_JC_TMELT | - |
Lemaitre criterion [4]. The element is broken if the variable C, defined below, reaches a critical value:
C=∫εpl0(23(1+ν)+3(1−2ν)(pJ2)2)dεpl
Name | Metafor Code | Dependency |
---|---|---|
ν | RUPT_LEMAITRE_NU | - |
Goijaerts criterion [5]. The element is broken if W, whose evolution law is defined below, reaches 1.
˙W=1C⟨1+ApJ2⟩(εpl)B˙εpl
where brackets are MacCaulay brackets:
⟨x⟩=12(x+|x|)
Name | Metafor Code | Dependency |
---|---|---|
A | RUPT_GOIJAERTS_A | - |
B | RUPT_GOIJAERTS_B | - |
C | RUPT_GOIJAERTS_C | - |
Maximum Principal Strain criterion [6]. Element failure is detected differently whether the element is globally under tension of compression. It is broken if:
‖ RUPT_MPSTRAIN_TL
if \epsilon_{I}\ + \epsilon_{II}\ + \epsilon_{III}\ > 0
\| \epsilon_{III}\| > RUPT_MPSTRAIN_CL
if \epsilon_{I}\ + \epsilon_{II}\ + \epsilon_{III}\ < 0
where \epsilon_{I} , \epsilon_{II} and \epsilon_{III} are principal strains in decreasing order.
Name | Metafor Code | Dependency |
---|---|---|
A | RUPT_MPSTRAIN_CL | - |
B | RUPT_MPSTRAIN_TL | - |
Bai and Wierzbicki rupture criterion [7]. The element is broken if the variable C, defined below, reaches a critical value: C = \int_0^{\overline{\varepsilon}^p}\dfrac{d\overline{\varepsilon}^{p}}{\overline{\varepsilon}^p_f (\eta,\overline{\theta})} where \overline{\varepsilon}^p_f (\eta,\overline{\theta}) is defined as: \overline{\varepsilon}^p_f (\eta,\overline{\theta}) = \left[ \frac{1}{2}\left( D_1e^{-D_2\eta}+D_5e^{-D_6\eta} \right)-D_3e^{-D_4\eta} \right]\overline{\theta}^2 + \frac{1}{2}\left( D_1e^{- D_2\eta}-D_5e^{-D_6\eta} \right)\overline{\theta}+D_3e^{-D_4\eta}
Name | Metafor Code | Dependency |
---|---|---|
D_1 | RUPT_BAI_D1 | - |
D_2 | RUPT_BAI_D2 | - |
D_3 | RUPT_BAI_D3 | - |
D_4 | RUPT_BAI_D4 | - |
D_5 | RUPT_BAI_D5 | - |
D_6 | RUPT_BAI_D6 | - |
\eta_{cutoff} | RUPT_BAI_CUTOFF | - |
Lou, Yoon and Huh rupture criterion [8]. The element is broken if the variable K, defined below, reaches a critical value: K = \int_0^{\overline{\varepsilon}^p}\dfrac{d\overline{\varepsilon}^{p}}{\overline{\varepsilon}^p_f (\eta,\overline{\theta})} where \overline{\varepsilon}^p_f is defined as: \overline{\varepsilon}^p_f = D_3\left( \frac{2}{\sqrt{L^2+3}} \right)^{-D_1} \left( \left\langle \frac{1}{1+C} \left[ \eta+\frac{3-L}{3\sqrt{L^2+3}}+C \right] \right\rangle \right)^{-D_2}
with, L = \frac{3 \tan\left( \theta \right) - \sqrt{3}}{\tan \left( \theta \right) + \sqrt{3}} where D_1, D_2 and D_3 are material parameters. L corresponds to an alternative definition of the Lode angle and the \left\langle \bullet \right\rangle symbol denotes the MacAuley brackets.
Name | Metafor Code | Dependency |
---|---|---|
D_1 | RUPT_LOU_D1 | - |
D_2 | RUPT_LOU_D2 | - |
D_3 | RUPT_LOU_D3 | - |
C | RUPT_LOU_C | - |