Processing math: 50%

Table of Contents



Failure criteria

RuptureCriterion

Description

RuptureCriterion manages various failure criteria.

The critical value C (RUPT_CRIT_VALUE) of a variable above which the element is broken.

The type of failure (RUPT_TYPE_CRIT) are defined in the table below :

Name Description
NOBREAK Compute the criterion, but never break any element
ONEBROKEN Break an element when ONE integration point override the critical value
ALLBROKEN Break an element when ALL the integration points override the critical value
MEANBROKEN Break an element when the averaged value over the integration points override the critical value

Parameters

Name Metafor Code Dependency
Critical value RUPT_CRIT_VALUE -
Type of failure RUPT_TYPE_CRIT -

IFRuptureCriterion

Description

The element is broken if an InternalField reaches a critical value. The critical InternalField is defined with the following command, which must be added when defining the criterion:

 rc.setInternalField(IF_EPL)

for a criterion based on a critical value of the equivalent plastic strain.

OneParameterRuptureCriterion

Description

Four simple rupture criteria are gathered in one single family. In order to selected one of the criteria the parameter RUPT_OP_LAW (only parameter in this criterion) need to be defined as: COCKROFT, BROZZO, AYADA or RICE. Then, the element is broken if the variable C reaches a critical value, which is defined in each case as:

Cockroft and Latham criterion (dimensional Value) : COCKROFT2 C=¯εp0σ1d¯εp Cockroft and Latham criterion (adimensional value) : COCKROFT C=¯εp0σ1¯σd¯εp Brozzo criterion : BROZZO C=¯εp02σ13(σ1p)d¯εp Ayada criterion : AYADA C=¯εp0p¯σd¯εp Rice and Tracey criterion : RICE C=¯εp0exp(32p¯σ)d¯εp

Parameters

Name Metafor Code Dependency
Criterion RUPT_OP_LAW -

BaoRuptureCriterion

Description

Bao-Wierzbicki criterion [1]. The element is broken if the variable C, defined below, reaches a critical value:

C=εpl0dεplεf

where εf is defined as:

εf={if pJ213P1(pJ2+13)P2if 13<pJ20P3(pJ2)2+P4pJ2+P5if 0<pJ2<0.4exp(P6pJ2)if pJ2>0.4

Parameters

Name Metafor Code Dependency
P1 RUPT_BAO_P1 -
P2 RUPT_BAO_P2 -
P3 RUPT_BAO_P3 -
P4 RUPT_BAO_P4 -
P5 RUPT_BAO_P5 -
P6 RUPT_BAO_P6 -

HancockMackenzieRuptureCriterion

Description

Hancock and Mackenzie criterion [2]. The critical plastic strain εf is defined as:

εf=D1+D2exp(D3pJ2)

Parameters

Name Metafor Code Dependency
D1 RUPT_HANCOCK_D1 -
D2 RUPT_HANCOCK_D2 -
D3 RUPT_HANCOCK_D3 -

JohnsonCookRuptureCriterion

Description

Johnson and Cook criterion [3]. The element is broken if the variable C, defined below, reaches a critical value: C=εpl0dεplεf

where εf is defined as:

εf=(D1+D2exp(D3pJ2))(1+D4ln˙εpl˙ε0)(1+D5TTroomTmeltTroom)

Parameters

Name Metafor Code Dependency
D1 RUPT_JC_D1 -
D2 RUPT_JC_D2 -
D3 RUPT_JC_D3 -
D4 RUPT_JC_D4 -
D5 RUPT_JC_D5 -
˙ε0 RUPT_JC_EPSP0 -
Room temperature Troom RUPT_JC_TROOM -
Melting temperature Tmelt RUPT_JC_TMELT -

LemaitreRuptureCriterion

Description

Lemaitre criterion [4]. The element is broken if the variable C, defined below, reaches a critical value:

C=εpl0(23(1+ν)+3(12ν)(pJ2)2)dεpl

Parameters

Name Metafor Code Dependency
ν RUPT_LEMAITRE_NU -

GoijaertsRuptureCriterion

Description

Goijaerts criterion [5]. The element is broken if W, whose evolution law is defined below, reaches 1.

˙W=1C1+ApJ2(εpl)B˙εpl

where brackets are MacCaulay brackets:

x=12(x+|x|)

Parameters

Name Metafor Code Dependency
A RUPT_GOIJAERTS_A -
B RUPT_GOIJAERTS_B -
C RUPT_GOIJAERTS_C -

MaximumPrincipalStrainRuptureCriterion

Description

Maximum Principal Strain criterion [6]. Element failure is detected differently whether the element is globally under tension of compression. It is broken if:

RUPT_MPSTRAIN_TL if \epsilon_{I}\ + \epsilon_{II}\ + \epsilon_{III}\ > 0

\| \epsilon_{III}\| > RUPT_MPSTRAIN_CL if \epsilon_{I}\ + \epsilon_{II}\ + \epsilon_{III}\ < 0

where \epsilon_{I} , \epsilon_{II} and \epsilon_{III} are principal strains in decreasing order.

Parameters

Name Metafor Code Dependency
A RUPT_MPSTRAIN_CL -
B RUPT_MPSTRAIN_TL -

BaiRuptureCriterion

Description

Bai and Wierzbicki rupture criterion [7]. The element is broken if the variable C, defined below, reaches a critical value: C = \int_0^{\overline{\varepsilon}^p}\dfrac{d\overline{\varepsilon}^{p}}{\overline{\varepsilon}^p_f (\eta,\overline{\theta})} where \overline{\varepsilon}^p_f (\eta,\overline{\theta}) is defined as: \overline{\varepsilon}^p_f (\eta,\overline{\theta}) = \left[ \frac{1}{2}\left( D_1e^{-D_2\eta}+D_5e^{-D_6\eta} \right)-D_3e^{-D_4\eta} \right]\overline{\theta}^2 + \frac{1}{2}\left( D_1e^{- D_2\eta}-D_5e^{-D_6\eta} \right)\overline{\theta}+D_3e^{-D_4\eta}

Parameters

Name Metafor Code Dependency
D_1 RUPT_BAI_D1 -
D_2 RUPT_BAI_D2 -
D_3 RUPT_BAI_D3 -
D_4 RUPT_BAI_D4 -
D_5 RUPT_BAI_D5 -
D_6 RUPT_BAI_D6 -
\eta_{cutoff} RUPT_BAI_CUTOFF -

LouRuptureCriterion

Description

Lou, Yoon and Huh rupture criterion [8]. The element is broken if the variable K, defined below, reaches a critical value: K = \int_0^{\overline{\varepsilon}^p}\dfrac{d\overline{\varepsilon}^{p}}{\overline{\varepsilon}^p_f (\eta,\overline{\theta})} where \overline{\varepsilon}^p_f is defined as: \overline{\varepsilon}^p_f = D_3\left( \frac{2}{\sqrt{L^2+3}} \right)^{-D_1} \left( \left\langle \frac{1}{1+C} \left[ \eta+\frac{3-L}{3\sqrt{L^2+3}}+C \right] \right\rangle \right)^{-D_2}

with, L = \frac{3 \tan\left( \theta \right) - \sqrt{3}}{\tan \left( \theta \right) + \sqrt{3}} where D_1, D_2 and D_3 are material parameters. L corresponds to an alternative definition of the Lode angle and the \left\langle \bullet \right\rangle symbol denotes the MacAuley brackets.

Parameters

Name Metafor Code Dependency
D_1 RUPT_LOU_D1 -
D_2 RUPT_LOU_D2 -
D_3 RUPT_LOU_D3 -
C RUPT_LOU_C -

References

[1] Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences 2004;46:81-98.

[2] Hancock JW, Mackenzie AC. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids 1976;24:147-160.

[3] Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: 7th International Symposium on Ballistics. The Hague: The Netherlands, 1983; 541-547.

[4] Lemaitre J. A Course on Damage Mechanics. Springer-Verlag Berlin Heidelberg, 1992.

[5] Goijaerts AM, Govaert LE, Baaijens FPT. Prediction of ductile fracture in metal blanking. Journal of Manufacturing Science and Engineering 2000;122:476-483.

[6]

[7] Bai I, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity 2008;24:1071-1096.

[8] Lou Y, Yoon JW, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. International Journal of Plasticity 2014;54:56-80.