Linear elastic orthotropic material.
The strain-stress relation in the orthotropic frame is written as:
$$ \left[ \begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{23} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{array} \right] = \left[ \begin{array}{cccccc} \frac{1}{E_{1}} & -\frac{\nu_{12}}{E_{1}} & -\frac{\nu_{13}}{E_{1}} & 0 & 0 & 0 \\ -\frac{\nu_{12}}{E_{1}} & \frac{1}{E_{2}} & -\frac{\nu_{23}}{E_{2}} & 0 & 0 & 0 \\ -\frac{\nu_{13}}{E_{1}} & -\frac{\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2\,G_{23}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2\,G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2\,G_{12}} \end{array} \right] \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{12} \end{array} \right] $$
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus $E_1$ | YOUNG_MODULUS_1 |
Young Modulus $E_2$ | YOUNG_MODULUS_2 |
Young Modulus $E_3$ | YOUNG_MODULUS_3 |
Poisson ratio $\nu_{12}$ | POISSON_RATIO_12 |
Poisson ratio $\nu_{13}$ | POISSON_RATIO_13 |
Poisson ratio $\nu_{23}$ | POISSON_RATIO_23 |
Shear modulus $G_{12}$ | SHEAR_MODULUS_12 |
Shear modulus $G_{13}$ | SHEAR_MODULUS_13 |
Shear modulus $G_{23}$ | SHEAR_MODULUS_23 |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |
Only the first two orthotropic axes are computed using ORTHO_AX{1,2}_{X,Y,Z}
, the third one being computed as the cross product of the first two.
Metafor version >=3536
Linear thermoelastic orthotropic material with orthotropic thermal conduction law.
Thermal conduction writes in the orthotropic frame $$ \boldsymbol{K}~\nabla T = \left[ \begin{array}{c c c} K_1 & 0 & 0 \\ 0 & K_2 & 0 \\ 0 & 0 & K_3 \end{array} \right] \nabla T, $$ where $\boldsymbol{K}$ is the orthotropic conduction matrix (in material axes) and $\nabla T$ is the temperature gradient.
Linear thermoelasticity in the orthotropic frame writes $$ \boldsymbol{\sigma} = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}^{th}) = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\alpha} \Delta T), $$ with stress tensor $\boldsymbol{\sigma}$, initial stress tensor $\boldsymbol{\sigma}_0$, Hooke's tensor $\mathbb{H}$, strain tensor (mechanical) $\boldsymbol{\varepsilon}$, and thermal strain tensor $\boldsymbol{\varepsilon}^{th}$, which is the product of the temperature variation $\Delta T$ and the thermal expansion (symmetric) tensor $\boldsymbol{\alpha}$.
Thermoelastic dissipation term $\dot{W}^{te}$ is given by the general (anisotropic) relation $$ \dot{W}^{te} = -\eta_{te} \left(\sum_{i=1}^3 \sum_{j=1}^3 \mathbb{H}_{ijkl} \alpha_{kl} \right)T \frac{\dot{J}}{J}, $$ with fraction of heat dissipated thermoelastic energy $\eta_{te}$ and determinant of the Jacobian matrix $J$.
Name | Metafor Code | Dependency |
---|---|---|
Density | MASS_DENSITY | TO/TM |
Young Modulus $E_1$ | YOUNG_MODULUS_1 | TO/TM |
Young Modulus $E_2$ | YOUNG_MODULUS_2 | TO/TM |
Young Modulus $E_3$ | YOUNG_MODULUS_3 | TO/TM |
Poisson ratio $\nu_{12}$ | POISSON_RATIO_12 | TO/TM |
Poisson ratio $\nu_{13}$ | POISSON_RATIO_13 | TO/TM |
Poisson ratio $\nu_{23}$ | POISSON_RATIO_23 | TO/TM |
Shear modulus $G_{12}$ | SHEAR_MODULUS_12 | TO/TM |
Shear modulus $G_{13}$ | SHEAR_MODULUS_13 | TO/TM |
Shear modulus $G_{23}$ | SHEAR_MODULUS_23 | TO/TM |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY | - |
Orthotropic axis | ORTHO_AX1_X | - |
Orthotropic axis | ORTHO_AX1_Y | - |
Orthotropic axis | ORTHO_AX1_Z | - |
Orthotropic axis | ORTHO_AX2_X | - |
Orthotropic axis | ORTHO_AX2_Y | - |
Orthotropic axis | ORTHO_AX2_Z | - |
Thermal Expansion $\alpha_1$ | THERM_EXPANSION_1 | TO/TM |
Thermal Expansion $\alpha_2$ | THERM_EXPANSION_2 | TO/TM |
Thermal Expansion $\alpha_3$ | THERM_EXPANSION_3 | TO/TM |
Conductivity $K_1$ | CONDUCTIVITY_1 | TO/TM |
Conductivity $K_2$ | CONDUCTIVITY_2 | TO/TM |
Conductivity $K_3$ | CONDUCTIVITY_3 | TO/TM |
Heat Capacity $C_p$ | HEAT_CAPACITY | TO/TM |
Dissipated thermoelastic power fraction $\eta_e$ | DISSIP_TE | - |
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | DISSIP_TQ | - |
Elastoplastic orthotropic material with isotropic hardening.
The elastic part follows the same relation as the linear orthotropic material.
As in the isotropic case, the yield stress verifies the constraint:
$$ f=\overline{\sigma}-\sigma_{yield}=0 $$
where $\overline{\sigma}$ is an equivalent stress, specific to orthotropic materials. See for example the criterion for long-fiber composites.
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus $E_1$ | YOUNG_MODULUS_1 |
Young Modulus $E_2$ | YOUNG_MODULUS_2 |
Young Modulus $E_3$ | YOUNG_MODULUS_3 |
Poisson ratio $\nu_{12}$ | POISSON_RATIO_12 |
Poisson ratio $\nu_{13}$ | POISSON_RATIO_13 |
Poisson ratio $\nu_{23}$ | POISSON_RATIO_23 |
Shear modulus $G_{12}$ | SHEAR_MODULUS_12 |
Shear modulus $G_{13}$ | SHEAR_MODULUS_13 |
Shear modulus $G_{23}$ | SHEAR_MODULUS_23 |
Number of the material law which defines the yield stress $\sigma_{yield}$ | YIELD_NUM |
Number of the plastic criterion | PLASTICCRITERION_NUM |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |
Metafor version >=3536
Thermomechanical elastoplastic orthotropic material with isotropic hardening. The thermal part of the law is similar to the one of the linear thermoelastic orthotropic material.
Name | Metafor Code | Dependency |
---|---|---|
Density | MASS_DENSITY | TO/TM |
Young Modulus $E_1$ | YOUNG_MODULUS_1 | TO/TM |
Young Modulus $E_2$ | YOUNG_MODULUS_2 | TO/TM |
Young Modulus $E_3$ | YOUNG_MODULUS_3 | TO/TM |
Poisson ratio $\nu_{12}$ | POISSON_RATIO_12 | TO/TM |
Poisson ratio $\nu_{13}$ | POISSON_RATIO_13 | TO/TM |
Poisson ratio $\nu_{23}$ | POISSON_RATIO_23 | TO/TM |
Shear modulus $G_{12}$ | SHEAR_MODULUS_12 | TO/TM |
Shear modulus $G_{13}$ | SHEAR_MODULUS_13 | TO/TM |
Shear modulus $G_{23}$ | SHEAR_MODULUS_23 | TO/TM |
Number of the material law which defines the yield stress $\sigma_{yield}$ | YIELD_NUM | - |
Number of the plastic criterion | PLASTICCRITERION_NUM | - |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY | - |
Orthotropic axis | ORTHO_AX1_X | - |
Orthotropic axis | ORTHO_AX1_Y | - |
Orthotropic axis | ORTHO_AX1_Z | - |
Orthotropic axis | ORTHO_AX2_X | - |
Orthotropic axis | ORTHO_AX2_Y | - |
Orthotropic axis | ORTHO_AX2_Z | - |
Thermal Expansion $\alpha_1$ | THERM_EXPANSION_1 | TO/TM |
Thermal Expansion $\alpha_2$ | THERM_EXPANSION_2 | TO/TM |
Thermal Expansion $\alpha_3$ | THERM_EXPANSION_3 | TO/TM |
Conductivity $K_1$ | CONDUCTIVITY_1 | TO/TM |
Conductivity $K_2$ | CONDUCTIVITY_2 | TO/TM |
Conductivity $K_3$ | CONDUCTIVITY_3 | TO/TM |
Heat Capacity $C_p$ | HEAT_CAPACITY | TO/TM |
Dissipated thermoelastic power fraction $\eta_e$ | DISSIP_TE | - |
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | DISSIP_TQ | - |
Elastoplastic orthotropic material with isotropic hardening and damage.
The elastoplastic part has the same characteristics as the elastoplastic orthotropic material
The damage part consists in a material softening governed by one or several damage variables $d_{ij}$, whose value is included between 0 and 1. Typically, a modulus equal to $E_i$ before damage becomes $(1-d_i)\,E_i$ once damage appears, but not always. The way damage is induced depends on the law defined by the parameter DAMAGE_NUM
. See for example the basic laws
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus $E_1$ | YOUNG_MODULUS_1 |
Young Modulus $E_2$ | YOUNG_MODULUS_2 |
Young Modulus $E_3$ | YOUNG_MODULUS_3 |
Poisson ratio $\nu_{12}$ | POISSON_RATIO_12 |
Poisson ratio $\nu_{13}$ | POISSON_RATIO_13 |
Poisson ratio $\nu_{23}$ | POISSON_RATIO_23 |
Shear modulus $G_{12}$ | SHEAR_MODULUS_12 |
Shear modulus $G_{13}$ | SHEAR_MODULUS_13 |
Shear modulus $G_{23}$ | SHEAR_MODULUS_23 |
Number of the material law which defines the yield stress $\sigma_{yield}$ | YIELD_NUM |
Number of the plastic criterion | PLASTICCRITERION_NUM |
Number of the damage law | DAMAGE_NUM |
Maximal value of damage variables (failure) | DAMAGE_MAX |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |