Linear elastic orthotropic material.
The strain-stress relation in the orthotropic frame is written as:
[ε11ε22ε33ε23ε31ε12]=[1E1−ν12E1−ν13E1000−ν12E11E2−ν23E2000−ν13E1−ν23E21E300000012G2300000012G1300000012G12][σ11σ22σ33σ23σ31σ12]
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus E1 | YOUNG_MODULUS_1 |
Young Modulus E2 | YOUNG_MODULUS_2 |
Young Modulus E3 | YOUNG_MODULUS_3 |
Poisson ratio ν12 | POISSON_RATIO_12 |
Poisson ratio ν13 | POISSON_RATIO_13 |
Poisson ratio ν23 | POISSON_RATIO_23 |
Shear modulus G12 | SHEAR_MODULUS_12 |
Shear modulus G13 | SHEAR_MODULUS_13 |
Shear modulus G23 | SHEAR_MODULUS_23 |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |
Only the first two orthotropic axes are computed using ORTHO_AX{1,2}_{X,Y,Z}
, the third one being computed as the cross product of the first two.
Metafor version >=3536
Linear thermoelastic orthotropic material with orthotropic thermal conduction law.
Thermal conduction writes in the orthotropic frame \boldsymbol{K}~\nabla T = \left[ \begin{array}{c c c} K_1 & 0 & 0 \\ 0 & K_2 & 0 \\ 0 & 0 & K_3 \end{array} \right] \nabla T, where \boldsymbol{K} is the orthotropic conduction matrix (in material axes) and \nabla T is the temperature gradient.
Linear thermoelasticity in the orthotropic frame writes \boldsymbol{\sigma} = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}^{th}) = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\alpha} \Delta T), with stress tensor \boldsymbol{\sigma}, initial stress tensor \boldsymbol{\sigma}_0, Hooke's tensor \mathbb{H}, strain tensor (mechanical) \boldsymbol{\varepsilon}, and thermal strain tensor \boldsymbol{\varepsilon}^{th}, which is the product of the temperature variation \Delta T and the thermal expansion (symmetric) tensor \boldsymbol{\alpha}.
Thermoelastic dissipation term \dot{W}^{te} is given by the general (anisotropic) relation \dot{W}^{te} = -\eta_{te} \left(\sum_{i=1}^3 \sum_{j=1}^3 \mathbb{H}_{ijkl} \alpha_{kl} \right)T \frac{\dot{J}}{J}, with fraction of heat dissipated thermoelastic energy \eta_{te} and determinant of the Jacobian matrix J.
Name | Metafor Code | Dependency |
---|---|---|
Density | MASS_DENSITY | TO/TM |
Young Modulus E_1 | YOUNG_MODULUS_1 | TO/TM |
Young Modulus E_2 | YOUNG_MODULUS_2 | TO/TM |
Young Modulus E_3 | YOUNG_MODULUS_3 | TO/TM |
Poisson ratio \nu_{12} | POISSON_RATIO_12 | TO/TM |
Poisson ratio \nu_{13} | POISSON_RATIO_13 | TO/TM |
Poisson ratio \nu_{23} | POISSON_RATIO_23 | TO/TM |
Shear modulus G_{12} | SHEAR_MODULUS_12 | TO/TM |
Shear modulus G_{13} | SHEAR_MODULUS_13 | TO/TM |
Shear modulus G_{23} | SHEAR_MODULUS_23 | TO/TM |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY | - |
Orthotropic axis | ORTHO_AX1_X | - |
Orthotropic axis | ORTHO_AX1_Y | - |
Orthotropic axis | ORTHO_AX1_Z | - |
Orthotropic axis | ORTHO_AX2_X | - |
Orthotropic axis | ORTHO_AX2_Y | - |
Orthotropic axis | ORTHO_AX2_Z | - |
Thermal Expansion \alpha_1 | THERM_EXPANSION_1 | TO/TM |
Thermal Expansion \alpha_2 | THERM_EXPANSION_2 | TO/TM |
Thermal Expansion \alpha_3 | THERM_EXPANSION_3 | TO/TM |
Conductivity K_1 | CONDUCTIVITY_1 | TO/TM |
Conductivity K_2 | CONDUCTIVITY_2 | TO/TM |
Conductivity K_3 | CONDUCTIVITY_3 | TO/TM |
Heat Capacity C_p | HEAT_CAPACITY | TO/TM |
Dissipated thermoelastic power fraction \eta_e | DISSIP_TE | - |
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | DISSIP_TQ | - |
Elastoplastic orthotropic material with isotropic hardening.
The elastic part follows the same relation as the linear orthotropic material.
As in the isotropic case, the yield stress verifies the constraint:
f=\overline{\sigma}-\sigma_{yield}=0
where \overline{\sigma} is an equivalent stress, specific to orthotropic materials. See for example the criterion for long-fiber composites.
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus E_1 | YOUNG_MODULUS_1 |
Young Modulus E_2 | YOUNG_MODULUS_2 |
Young Modulus E_3 | YOUNG_MODULUS_3 |
Poisson ratio \nu_{12} | POISSON_RATIO_12 |
Poisson ratio \nu_{13} | POISSON_RATIO_13 |
Poisson ratio \nu_{23} | POISSON_RATIO_23 |
Shear modulus G_{12} | SHEAR_MODULUS_12 |
Shear modulus G_{13} | SHEAR_MODULUS_13 |
Shear modulus G_{23} | SHEAR_MODULUS_23 |
Number of the material law which defines the yield stress \sigma_{yield} | YIELD_NUM |
Number of the plastic criterion | PLASTICCRITERION_NUM |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |
Metafor version >=3536
Thermomechanical elastoplastic orthotropic material with isotropic hardening. The thermal part of the law is similar to the one of the linear thermoelastic orthotropic material.
Name | Metafor Code | Dependency |
---|---|---|
Density | MASS_DENSITY | TO/TM |
Young Modulus E_1 | YOUNG_MODULUS_1 | TO/TM |
Young Modulus E_2 | YOUNG_MODULUS_2 | TO/TM |
Young Modulus E_3 | YOUNG_MODULUS_3 | TO/TM |
Poisson ratio \nu_{12} | POISSON_RATIO_12 | TO/TM |
Poisson ratio \nu_{13} | POISSON_RATIO_13 | TO/TM |
Poisson ratio \nu_{23} | POISSON_RATIO_23 | TO/TM |
Shear modulus G_{12} | SHEAR_MODULUS_12 | TO/TM |
Shear modulus G_{13} | SHEAR_MODULUS_13 | TO/TM |
Shear modulus G_{23} | SHEAR_MODULUS_23 | TO/TM |
Number of the material law which defines the yield stress \sigma_{yield} | YIELD_NUM | - |
Number of the plastic criterion | PLASTICCRITERION_NUM | - |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY | - |
Orthotropic axis | ORTHO_AX1_X | - |
Orthotropic axis | ORTHO_AX1_Y | - |
Orthotropic axis | ORTHO_AX1_Z | - |
Orthotropic axis | ORTHO_AX2_X | - |
Orthotropic axis | ORTHO_AX2_Y | - |
Orthotropic axis | ORTHO_AX2_Z | - |
Thermal Expansion \alpha_1 | THERM_EXPANSION_1 | TO/TM |
Thermal Expansion \alpha_2 | THERM_EXPANSION_2 | TO/TM |
Thermal Expansion \alpha_3 | THERM_EXPANSION_3 | TO/TM |
Conductivity K_1 | CONDUCTIVITY_1 | TO/TM |
Conductivity K_2 | CONDUCTIVITY_2 | TO/TM |
Conductivity K_3 | CONDUCTIVITY_3 | TO/TM |
Heat Capacity C_p | HEAT_CAPACITY | TO/TM |
Dissipated thermoelastic power fraction \eta_e | DISSIP_TE | - |
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) | DISSIP_TQ | - |
Elastoplastic orthotropic material with isotropic hardening and damage.
The elastoplastic part has the same characteristics as the elastoplastic orthotropic material
The damage part consists in a material softening governed by one or several damage variables d_{ij}, whose value is included between 0 and 1. Typically, a modulus equal to E_i before damage becomes (1-d_i)\,E_i once damage appears, but not always. The way damage is induced depends on the law defined by the parameter DAMAGE_NUM
. See for example the basic laws
Name | Metafor Code |
---|---|
Density | MASS_DENSITY |
Young Modulus E_1 | YOUNG_MODULUS_1 |
Young Modulus E_2 | YOUNG_MODULUS_2 |
Young Modulus E_3 | YOUNG_MODULUS_3 |
Poisson ratio \nu_{12} | POISSON_RATIO_12 |
Poisson ratio \nu_{13} | POISSON_RATIO_13 |
Poisson ratio \nu_{23} | POISSON_RATIO_23 |
Shear modulus G_{12} | SHEAR_MODULUS_12 |
Shear modulus G_{13} | SHEAR_MODULUS_13 |
Shear modulus G_{23} | SHEAR_MODULUS_23 |
Number of the material law which defines the yield stress \sigma_{yield} | YIELD_NUM |
Number of the plastic criterion | PLASTICCRITERION_NUM |
Number of the damage law | DAMAGE_NUM |
Maximal value of damage variables (failure) | DAMAGE_MAX |
Objectivity method (Jaumann = 0, GreenNaghdi = 1) | OBJECTIVITY |
Orthotropic axis | ORTHO_AX1_X |
Orthotropic axis | ORTHO_AX1_Y |
Orthotropic axis | ORTHO_AX1_Z |
Orthotropic axis | ORTHO_AX2_X |
Orthotropic axis | ORTHO_AX2_Y |
Orthotropic axis | ORTHO_AX2_Z |