Table of Contents

Orthotropic materials

ElastOrthoHypoMaterial

Description

Linear elastic orthotropic material.

The strain-stress relation in the orthotropic frame is written as:

$$ \left[ \begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{23} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{array} \right] = \left[ \begin{array}{cccccc} \frac{1}{E_{1}} & -\frac{\nu_{12}}{E_{1}} & -\frac{\nu_{13}}{E_{1}} & 0 & 0 & 0 \\ -\frac{\nu_{12}}{E_{1}} & \frac{1}{E_{2}} & -\frac{\nu_{23}}{E_{2}} & 0 & 0 & 0 \\ -\frac{\nu_{13}}{E_{1}} & -\frac{\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2\,G_{23}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2\,G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2\,G_{12}} \end{array} \right] \left[ \begin{array}{c} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{12} \end{array} \right] $$

Parameters

Name Metafor Code
Density MASS_DENSITY
Young Modulus $E_1$ YOUNG_MODULUS_1
Young Modulus $E_2$ YOUNG_MODULUS_2
Young Modulus $E_3$ YOUNG_MODULUS_3
Poisson ratio $\nu_{12}$ POISSON_RATIO_12
Poisson ratio $\nu_{13}$ POISSON_RATIO_13
Poisson ratio $\nu_{23}$ POISSON_RATIO_23
Shear modulus $G_{12}$ SHEAR_MODULUS_12
Shear modulus $G_{13}$ SHEAR_MODULUS_13
Shear modulus $G_{23}$ SHEAR_MODULUS_23
Objectivity method
(Jaumann = 0, GreenNaghdi = 1)
OBJECTIVITY
Orthotropic axis ORTHO_AX1_X
Orthotropic axis ORTHO_AX1_Y
Orthotropic axis ORTHO_AX1_Z
Orthotropic axis ORTHO_AX2_X
Orthotropic axis ORTHO_AX2_Y
Orthotropic axis ORTHO_AX2_Z

Only the first two orthotropic axes are computed using ORTHO_AX{1,2}_{X,Y,Z}, the third one being computed as the cross product of the first two.

TmElastOrthoHypoMaterial

:!: Metafor version >=3536

Description

Linear thermoelastic orthotropic material with orthotropic thermal conduction law.

Thermal conduction writes in the orthotropic frame $$ \boldsymbol{K}~\nabla T = \left[ \begin{array}{c c c} K_1 & 0 & 0 \\ 0 & K_2 & 0 \\ 0 & 0 & K_3 \end{array} \right] \nabla T, $$ where $\boldsymbol{K}$ is the orthotropic conduction matrix (in material axes) and $\nabla T$ is the temperature gradient.

Linear thermoelasticity in the orthotropic frame writes $$ \boldsymbol{\sigma} = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}^{th}) = \boldsymbol{\sigma}_0 + \mathbb{H} : (\boldsymbol{\varepsilon} - \boldsymbol{\alpha} \Delta T), $$ with stress tensor $\boldsymbol{\sigma}$, initial stress tensor $\boldsymbol{\sigma}_0$, Hooke's tensor $\mathbb{H}$, strain tensor (mechanical) $\boldsymbol{\varepsilon}$, and thermal strain tensor $\boldsymbol{\varepsilon}^{th}$, which is the product of the temperature variation $\Delta T$ and the thermal expansion (symmetric) tensor $\boldsymbol{\alpha}$.

Thermoelastic dissipation term $\dot{W}^{te}$ is given by the general (anisotropic) relation $$ \dot{W}^{te} = -\eta_{te} \left(\sum_{i=1}^3 \sum_{j=1}^3 \mathbb{H}_{ijkl} \alpha_{kl} \right)T \frac{\dot{J}}{J}, $$ with fraction of heat dissipated thermoelastic energy $\eta_{te}$ and determinant of the Jacobian matrix $J$.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Young Modulus $E_1$ YOUNG_MODULUS_1 TO/TM
Young Modulus $E_2$ YOUNG_MODULUS_2 TO/TM
Young Modulus $E_3$ YOUNG_MODULUS_3 TO/TM
Poisson ratio $\nu_{12}$ POISSON_RATIO_12 TO/TM
Poisson ratio $\nu_{13}$ POISSON_RATIO_13 TO/TM
Poisson ratio $\nu_{23}$ POISSON_RATIO_23 TO/TM
Shear modulus $G_{12}$ SHEAR_MODULUS_12 TO/TM
Shear modulus $G_{13}$ SHEAR_MODULUS_13 TO/TM
Shear modulus $G_{23}$ SHEAR_MODULUS_23 TO/TM
Objectivity method
(Jaumann = 0, GreenNaghdi = 1)
OBJECTIVITY -
Orthotropic axis ORTHO_AX1_X -
Orthotropic axis ORTHO_AX1_Y -
Orthotropic axis ORTHO_AX1_Z -
Orthotropic axis ORTHO_AX2_X -
Orthotropic axis ORTHO_AX2_Y -
Orthotropic axis ORTHO_AX2_Z -
Thermal Expansion $\alpha_1$ THERM_EXPANSION_1 TO/TM
Thermal Expansion $\alpha_2$ THERM_EXPANSION_2 TO/TM
Thermal Expansion $\alpha_3$ THERM_EXPANSION_3 TO/TM
Conductivity $K_1$ CONDUCTIVITY_1 TO/TM
Conductivity $K_2$ CONDUCTIVITY_2 TO/TM
Conductivity $K_3$ CONDUCTIVITY_3 TO/TM
Heat Capacity $C_p$ HEAT_CAPACITY TO/TM
Dissipated thermoelastic power fraction $\eta_e$ DISSIP_TE -
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) DISSIP_TQ -

EpIsoHOrthoHypoMaterial

Description

Elastoplastic orthotropic material with isotropic hardening.

The elastic part follows the same relation as the linear orthotropic material.

As in the isotropic case, the yield stress verifies the constraint:

$$ f=\overline{\sigma}-\sigma_{yield}=0 $$

where $\overline{\sigma}$ is an equivalent stress, specific to orthotropic materials. See for example the criterion for long-fiber composites.

Parameters

Name Metafor Code
Density MASS_DENSITY
Young Modulus $E_1$ YOUNG_MODULUS_1
Young Modulus $E_2$ YOUNG_MODULUS_2
Young Modulus $E_3$ YOUNG_MODULUS_3
Poisson ratio $\nu_{12}$ POISSON_RATIO_12
Poisson ratio $\nu_{13}$ POISSON_RATIO_13
Poisson ratio $\nu_{23}$ POISSON_RATIO_23
Shear modulus $G_{12}$ SHEAR_MODULUS_12
Shear modulus $G_{13}$ SHEAR_MODULUS_13
Shear modulus $G_{23}$ SHEAR_MODULUS_23
Number of the material law which defines the yield stress $\sigma_{yield}$ YIELD_NUM
Number of the plastic criterion PLASTICCRITERION_NUM
Objectivity method
(Jaumann = 0, GreenNaghdi = 1)
OBJECTIVITY
Orthotropic axis ORTHO_AX1_X
Orthotropic axis ORTHO_AX1_Y
Orthotropic axis ORTHO_AX1_Z
Orthotropic axis ORTHO_AX2_X
Orthotropic axis ORTHO_AX2_Y
Orthotropic axis ORTHO_AX2_Z

TmEpIsoHOrthoHypoMaterial

:!: Metafor version >=3536

Description

Thermomechanical elastoplastic orthotropic material with isotropic hardening. The thermal part of the law is similar to the one of the linear thermoelastic orthotropic material.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Young Modulus $E_1$ YOUNG_MODULUS_1 TO/TM
Young Modulus $E_2$ YOUNG_MODULUS_2 TO/TM
Young Modulus $E_3$ YOUNG_MODULUS_3 TO/TM
Poisson ratio $\nu_{12}$ POISSON_RATIO_12 TO/TM
Poisson ratio $\nu_{13}$ POISSON_RATIO_13 TO/TM
Poisson ratio $\nu_{23}$ POISSON_RATIO_23 TO/TM
Shear modulus $G_{12}$ SHEAR_MODULUS_12 TO/TM
Shear modulus $G_{13}$ SHEAR_MODULUS_13 TO/TM
Shear modulus $G_{23}$ SHEAR_MODULUS_23 TO/TM
Number of the material law which defines the yield stress $\sigma_{yield}$ YIELD_NUM -
Number of the plastic criterion PLASTICCRITERION_NUM -
Objectivity method
(Jaumann = 0, GreenNaghdi = 1)
OBJECTIVITY -
Orthotropic axis ORTHO_AX1_X -
Orthotropic axis ORTHO_AX1_Y -
Orthotropic axis ORTHO_AX1_Z -
Orthotropic axis ORTHO_AX2_X -
Orthotropic axis ORTHO_AX2_Y -
Orthotropic axis ORTHO_AX2_Z -
Thermal Expansion $\alpha_1$ THERM_EXPANSION_1 TO/TM
Thermal Expansion $\alpha_2$ THERM_EXPANSION_2 TO/TM
Thermal Expansion $\alpha_3$ THERM_EXPANSION_3 TO/TM
Conductivity $K_1$ CONDUCTIVITY_1 TO/TM
Conductivity $K_2$ CONDUCTIVITY_2 TO/TM
Conductivity $K_3$ CONDUCTIVITY_3 TO/TM
Heat Capacity $C_p$ HEAT_CAPACITY TO/TM
Dissipated thermoelastic power fraction $\eta_e$ DISSIP_TE -
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) DISSIP_TQ -

DamageEpIsoHOrthoHypoMaterial

Description

Elastoplastic orthotropic material with isotropic hardening and damage.

The elastoplastic part has the same characteristics as the elastoplastic orthotropic material

The damage part consists in a material softening governed by one or several damage variables $d_{ij}$, whose value is included between 0 and 1. Typically, a modulus equal to $E_i$ before damage becomes $(1-d_i)\,E_i$ once damage appears, but not always. The way damage is induced depends on the law defined by the parameter DAMAGE_NUM. See for example the basic laws

Parameters

Name Metafor Code
Density MASS_DENSITY
Young Modulus $E_1$ YOUNG_MODULUS_1
Young Modulus $E_2$ YOUNG_MODULUS_2
Young Modulus $E_3$ YOUNG_MODULUS_3
Poisson ratio $\nu_{12}$ POISSON_RATIO_12
Poisson ratio $\nu_{13}$ POISSON_RATIO_13
Poisson ratio $\nu_{23}$ POISSON_RATIO_23
Shear modulus $G_{12}$ SHEAR_MODULUS_12
Shear modulus $G_{13}$ SHEAR_MODULUS_13
Shear modulus $G_{23}$ SHEAR_MODULUS_23
Number of the material law which defines the yield stress $\sigma_{yield}$ YIELD_NUM
Number of the plastic criterion PLASTICCRITERION_NUM
Number of the damage law DAMAGE_NUM
Maximal value of damage variables (failure) DAMAGE_MAX
Objectivity method
(Jaumann = 0, GreenNaghdi = 1)
OBJECTIVITY
Orthotropic axis ORTHO_AX1_X
Orthotropic axis ORTHO_AX1_Y
Orthotropic axis ORTHO_AX1_Z
Orthotropic axis ORTHO_AX2_X
Orthotropic axis ORTHO_AX2_Y
Orthotropic axis ORTHO_AX2_Z