Table of Contents

Hyperelastic materials

NeoHookeanHyperMaterial

Description

Neo-Hookean hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.

(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.

$$ W\left(I_1,I_2,J\right) = \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right] $$

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
NeoHookean coefficient ($C_1$) RUBBER_C1 TO/TM
Initial bulk modulus ($k_0$) RUBBER_PENAL TO/TM
Material temperature evolution law TEMP TM
Thermal expansion coefficient ($\alpha$) THERM_EXPANSION TO/TM

TmNeoHookeanHyperMaterial

Metafor version $\geq$ 3554

Description

Neo-Hookean hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.

Here, the TEMP parameter is not relevant anymore.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
NeoHookean coefficient ($C_1$) RUBBER_C1 TO/TM
Initial bulk modulus ($k_0$) RUBBER_PENAL TO/TM
Thermal expansion coefficient ($\alpha$) THERM_EXPANSION TO/TM
Conductivity CONDUCTIVITY TO/TM
Heat capacity HEAT_CAPACITY TO/TM
Dissipated thermoelastic power fraction DISSIP_TE -
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) DISSIP_TQ -

MooneyRivlinHyperMaterial

Description

Mooney-Rivlin hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.

(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.

$$ W\left(I_1,I_2,J\right) = \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + C_2\left(\bar{I_2} - 3\right)+ \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right] $$

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Mooney-Rivlin coefficient ($C_1$) RUBBER_C1 TO/TM
Mooney-Rivlin coefficient ($C_2$) RUBBER_C2 TO/TM
Initial bulk modulus ($k_0$) RUBBER_PENAL TO/TM
Material temperature evolution law TEMP TM
Thermal expansion coefficient ($\alpha$) THERM_EXPANSION TO/TM

Version < 3554
This material has no analytical material tangent stiffness. The latter should be computed by pertubation (global or material).
See STIFFMETHOD in the element properties of Volume elements.

TmMooneyRivlinHyperMaterial

Metafor version $\geq$ 3554

Description

Mooney-Rivlin hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.

Here, the TEMP parameter is not relevant anymore.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Mooney-Rivlin coefficient ($C_1$) RUBBER_C1 TO/TM
Mooney-Rivlin coefficient ($C_2$) RUBBER_C2 TO/TM
Initial bulk modulus ($k_0$) RUBBER_PENAL TO/TM
Thermal expansion coefficient ($\alpha$) THERM_EXPANSION TO/TM
Conductivity CONDUCTIVITY TO/TM
Heat capacity HEAT_CAPACITY TO/TM
Dissipated thermoelastic power fraction DISSIP_TE -
Dissipated (visco)plastic power fraction (Taylor-Quinney factor) DISSIP_TQ -

HolzapfelGasserOgdenHyperMaterial

Description

Holzapfel-Gasser-Ogden (invariant-based) anisotropic hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration. This model is particularly suited to predict the response of biological tissues.

(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.

The strain-energy density function $W$ is expressed as the sum of an isotropic (=matrix) and anisotropic (=fibers) contribution: $$ W\left(\bar{I}_1,\bar{I}_4,J \right) = W_{iso}\left(\bar{I}_1,J \right) + W_{ani}\left(\bar{I}_1,\bar{I}_4\right) $$

The isotropic contribution takes the form of a generalized Neo-Hookean model: $$ W_{iso}\left(\bar{I}_1,J \right) = C_1\left(\bar{I}_1 -3\right) +K f\left(J\right) = C_1\left(\bar{I}_1 -3\right) +\frac{k_0}{2}\text{ln}^2 J $$

The anisotropic contribution to the strain energy density function writes: $$ W_{ani}\left(\bar{I}_1,\bar{I}_4\right) = \frac{k_1}{2k_2} \sum_{\alpha=1}^n \left[ e^{k_2\left<E_\alpha \right>^2} - 1 \right] = \frac{k_1}{2k_2} \sum_{\alpha=1}^n \left[ e^{k_2\left<d(\bar{I}_1-3)+(1-3d)(\bar{I}_4^\alpha - 1)\right>^2} - 1 \right], $$ where $k_1$[MPa] and $k_2$[-] are material parameters characterizing all fiber families in the material. $d\in[0,~\frac{1}{3}]$ is a parameter accounting for fiber dispersion, with $d=0$ corresponding to perfectly aligned fibers whilst $d=\frac{1}{3}$ corresponds to randomly oriented fibers (isotropic response). The model adds up to three different families of fibers ($\alpha \leq 3$), with their initial orientation given by $\mathbf{a}^\alpha = \left[a_{\alpha x},~a_{\alpha y},~a_{\alpha z} \right]$. Fiber directions do not have to be orthogonal.

More information and mathematical derivations, such as the analytical tangent stiffness matrix, can be found in metafor_hgo.pdf.

Parameters

Name Metafor Code
Density MASS_DENSITY
Mooney-Rivlin coefficient ($C_1$) RUBBER_C1
Initial bulk modulus ($k_0$) RUBBER_PENAL
HGO parameter $k_1$ HGO_K1
HGO parameter $k_2$ HGO_K2
Fiber dissipation $d$ (optional, default=0) HGO_DISP
Direction of $1^{st}$ fiber family $\mathbf{a}^1$ HGO_FIB1_X, HGO_FIB1_Y, HGO_FIB1_Z
Direction of $2^{nd}$ fiber family $\mathbf{a}^2$ HGO_FIB2_X, HGO_FIB2_Y, HGO_FIB2_Z
Direction of $3^{rd}$ fiber family $\mathbf{a}^3$ HGO_FIB3_X, HGO_FIB3_Y, HGO_FIB3_Z

NeoHookeanHyperPk2Material

Description

Neo-Hookean hyperelastic law, using a PK2 tensor.

The potential per unit volume is computed based on the average compressibility over the element, ($\theta$):

$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$

The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:

$$ U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right] $$

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Initial bulk modulus ($k_0$) HYPER_K0 TO/TM
Initial shear modulus ($g_0$) HYPER_G0 TO/TM
Material temperature evolution law TEMP TM
Thermal expansion coefficient ($\alpha$) THERM_EXPANSION TO/TM

LogarihtmicHyperPk2Material

Description

Logarithmic hyperelastic law, using a PK2 tensor.

The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):

$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$

The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:

$$ U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}\right):\ln \left(\hat{\mathbf{C}}\right) $$

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Initial bulk modulus ($k_0$) HYPER_K0 TO/TM
Initial shear modulus ($g_0$) HYPER_G0 TO/TM
Material temperature evolution law TEMP TM
Thermal expansion coefficient ($\alpha$) THERM_EXPANSION TO/TM

EvpIsoHLogarithmicHyperPk2Material

Description

Logarithmic hyperelastic law, using a PK2 tensor.

The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):

$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$

The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:

$$ U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}^{el}\right):\ln \left(\hat{\mathbf{C}}^{el}\right) $$

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Initial bulk modulus ($k_0$) HYPER_K0 TO/TM
Initial shear modulus ($g_0$) HYPER_G0 TO/TM
Number of the material law which defines the yield stress $\sigma_{yield}$ YIELD_NUM -
Material temperature evolution law TEMP TM
Thermal expansion coefficient ($\alpha$) THERM_EXPANSION TO/TM

FunctionBasedHyperPk2Material

Description

Hyperelastic law, using a PK2 tensor. Its function applied on the strain spectral decomposition is a user law.

The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):

$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$

The deviatoric potential is computed based on a hyperelastic user function defined in Viscoelastic laws.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Initial bulk modulus ($k_0$) HYPER_K0 TO/TM
Number of the hyperelastic law HYPER_FUNCTION_NO -
Material temperature evolution law TEMP TM
Thermal expansion coefficient ($\alpha$) THERM_EXPANSION TO/TM

VeIsoHyperPk2Material

Description

Viscoelastic hyperelastic law, using a PK2 tensor. The law includes a main branch (spring and dashpot in parallel) and one or several Maxwell branches (spring and dashpot in series).

Each branch has its behavior corresponding to a viscoelastic law, supplied by the user.

The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):

$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$

The deviatoric potential is computed based on the viscoelastic laws :

$$ U^{dev}= U^{dev}_{\text{main,elastic}}\left(\hat{C}\right) + \sum_{Maxwell} U^{dev}_{\text{Maxwell,elastic}}\left(\hat{C}^{\text{el}}\right) $$

The dissipation potential is written as:

$$ \Delta t \phi^{dev}= \Delta t \phi^{dev}_{\text{main,viscous}}\left( \exp{\frac{\ln{\Delta\hat{C}}}{\Delta t}} \right) + \sum_{Maxwell} \Delta t \phi^{dev}_{\text{Maxwell,viscous}}\left(\exp{\frac{\ln{\Delta C^{\text{vis}}}}{\Delta t}} \right) $$

where $$ \Delta\hat{C} = {\hat{F}^n}^{-T} \hat{C}^{n+1} {\hat{F}^n}^{-1} $$

$$ \Delta C^{\text{vis}} = {{F^{\text{vis}}}^n}^{-T} {C^{\text{vis}}}^{n+1} {{F^{\text{vis}}}^n}^{-1} $$

The potentials $ U^{dev}_{\text{main,elastic}},~~U^{dev}_{\text{Maxwell,elastic}},~~\phi^{dev}_{\text{main,viscous}},~~\phi^{dev}_{\text{Maxwell,viscous}} $ are hyperelastic functions defined in Viscoelastic laws.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY TO/TM
Initial bulk modulus ($k_0$) HYPER_K0 TO/TM
Number of the main viscoelastic law MAIN_FUNCTION_NO -
Number of the first Maxwell viscoelastic law MAXWELL_FUNCTION_NO1 -
Number of the second Maxwell viscoelastic law (optional) MAXWELL_FUNCTION_NO2 -
Number of the third Maxwell viscoelastic law (optional) MAXWELL_FUNCTION_NOI -
Material temperature evolution law TEMP TM
Thermal expansion coefficient ($\alpha$) THERM_EXPANSION TO/TM