Table of Contents

Hyperelastic materials

NeoHookeanHyperMaterial

Description

Neo-Hookean hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.

(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.

$$ W\left(I_1,I_2,J\right) = \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right] $$

Parameters

Name Metafor Code
Density MASS_DENSITY
NeoHookean coefficient ($C_1$) RUBBER_C1
Initial bulk modulus ($k_0$) RUBBER_PENAL

MooneyRivlinHyperMaterial

Description

Mooney-Rivlin hyperelastic law, using a Cauchy stress tensor $\boldsymbol{\sigma}$, stress in the current configuration.

(Quasi-)incompressibility is treated by a volumetric/deviatoric multiplicative split of the deformation gradient, i.e. $\bar{\mathbf{F}} = J^{-1/3}\mathbf{F}$. Hence the deviatoric potential is based on reduced invariants of $\bar{\mathbf{b}} =\bar{\mathbf{F}}\bar{\mathbf{F}}^T $.

$$ W\left(I_1,I_2,J\right) = \bar{W}\left(\bar{I_1},\bar{I_2}\right) + K f\left(J\right) = C_1\left(\bar{I_1} - 3\right) + C_2\left(\bar{I_2} - 3\right)+ \frac{k_0}{2}\left[ \left(J-1\right)^2 + \ln^2 J\right] $$

Parameters

Name Metafor Code
Density MASS_DENSITY
Mooney-Rivlin coefficient ($C_1$) RUBBER_C1
Mooney-Rivlin coefficient ($C_2$) RUBBER_C2
Initial bulk modulus ($k_0$) RUBBER_PENAL

This material has no analytical material tangent stiffness. The latter should be computed by pertubation (global or material).
See STIFFMETHOD in the element properties of Volume elements.

NeoHookeanHyperPk2Material

Description

Neo-Hookean hyperelastic law, using a PK2 tensor.

The potential per unit volume is computed based on the average compressibility over the element, ($\theta$):

$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$

The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:

$$ U^{dev}=\dfrac{g_0}{2} \left[\text{tr}\right(\hat{\mathbf{C}}\left)-3\right] $$

Parameters

Name Metafor Code
Density MASS_DENSITY
Initial bulk modulus ($k_0$) HYPER_K0
Initial shear modulus ($g_0$) HYPER_G0

LogarihtmicHyperPk2Material

Description

Logarithmic hyperelastic law, using a PK2 tensor.

The potential per unit volume is computed based on the average compressibility of the element, ($q$):

$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$

The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:

$$ U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}\right):\ln \left(\hat{\mathbf{C}}\right) $$

Parameters

Name Metafor Code
Density MASS_DENSITY
Initial bulk modulus ($k_0$) HYPER_K0
Initial shear modulus ($g_0$) HYPER_G0

EvpIsoHLogarithmicHyperPk2Material

Description

Logarithmic hyperelastic law, using a PK2 tensor.

The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):

$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$

The deviatoric potential is computed based on a Cauchy tensor with a unit determinant:

$$ U^{dev}= \dfrac{g_0}{4} \ln \left(\hat{\mathbf{C}}^{el}\right):\ln \left(\hat{\mathbf{C}}^{el}\right) $$

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY -
Initial bulk modulus ($k_0$) HYPER_K0 -
Initial shear modulus ($g_0$) HYPER_G0 -
Number of the material law which defines the yield stress $\sigma_{yield}$ YIELD_NUM -

FunctionBasedHyperPk2Material

Description

Hyperelastic law, using a PK2 tensor. Its function applied on the strain spectral decomposition is a user law.

The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):

$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$

The deviatoric potential is computed based on a hyperelastic user function defined in Viscoelastic laws.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY -
Initial bulk modulus ($k_0$) HYPER_K0 -
Number of the hyperelastic law HYPER_FUNCTION_NO -

VeIsoHyperPk2Material

Description

Viscoelastic hyperelastic law, using a PK2 tensor. The law includes a main branch (spring and dashpot in parallel) and one or several Maxwell branches (spring and dashpot in series).

Each branch has its behavior corresponding to a viscoelastic law, supplied by the user.

The potential per unit volume is computed based on the average compressibility of the element, ($\theta$):

$$ U^{vol}=\dfrac{k_0}{2} \left[\ln\right(\theta\left)\right]^2 $$

The deviatoric potential is computed based on the viscoelastic laws :

$$ U^{dev}= U^{dev}_{\text{main,elastic}}\left(\hat{C}\right) + \sum_{Maxwell} U^{dev}_{\text{Maxwell,elastic}}\left(\hat{C}^{\text{el}}\right) $$

The dissipation potential is written as:

$$ \Delta t \phi^{dev}= \Delta t \phi^{dev}_{\text{main,viscous}}\left( \exp{\frac{\ln{\Delta\hat{C}}}{\Delta t}} \right) + \sum_{Maxwell} \Delta t \phi^{dev}_{\text{Maxwell,viscous}}\left(\exp{\frac{\ln{\Delta C^{\text{vis}}}}{\Delta t}} \right) $$

where $$ \Delta\hat{C} = {\hat{F}^n}^{-T} \hat{C}^{n+1} {\hat{F}^n}^{-1} $$

$$ \Delta C^{\text{vis}} = {{F^{\text{vis}}}^n}^{-T} {C^{\text{vis}}}^{n+1} {{F^{\text{vis}}}^n}^{-1} $$

The potentials $ U^{dev}_{\text{main,elastic}},~~U^{dev}_{\text{Maxwell,elastic}},~~\phi^{dev}_{\text{main,viscous}},~~\phi^{dev}_{\text{Maxwell,viscous}} $ are hyperelastic functions defined in Viscoelastic laws.

Parameters

Name Metafor Code Dependency
Density MASS_DENSITY -
Initial bulk modulus ($k_0$) HYPER_K0 -
Number of the main viscoelastic law MAIN_FUNCTION_NO -
Number of the first Maxwell viscoelastic law MAXWELL_FUNCTION_NO1 -
Number of the second Maxwell viscoelastic law (optional) MAXWELL_FUNCTION_NO2 -
Number of the third Maxwell viscoelastic law (optional) MAXWELL_FUNCTION_NOI -