Table of Contents

Deviatoric Potentials

This section contains all material laws which allow to define the deviatoric part of the strain-energy density function $W_{dev}$

Isotropic Elastic Potentials

The ElasticPotential material law regroups elastic isotropic deviatoric strain-energy density functions as $$ W_{dev} = W^e_{dev}\left(\bar{I}_1, \bar{I}_2, \bar{I}_3\right) = W^e_{dev}\left(\bar{I}_1, \bar{I}_2, J\right) $$

Reminders

$$ \bar{I}_1 = \text{tr}\bar{\mathbf{B}} = \text{tr}\bar{\mathbf{C}} = \bar{\mathbf{F}}:\bar{\mathbf{F}} = J^{-\frac{2}{3}}I_1 $$ $$ \bar{I}_2 = \frac{1}{2}\left[ \left(\text{tr}\bar{\mathbf{B}}\right)^2 - \text{tr}\bar{\mathbf{B}}^2 \right] = \frac{1}{2}\left[ \left(\text{tr}\bar{\mathbf{C}}\right)^2 - \text{tr}\bar{\mathbf{C}}^2 \right] = J^{-\frac{4}{3}}I_2 $$ $$ \bar{I}_3 = \text{det}\bar{\mathbf{B}} = \text{det}\bar{\mathbf{C}} = 1 $$

NeoHookeanHyperPotential

Description

The deviatoric part of the isotropic Neo-Hookean hyperelastic law writes $$ W^e_{\text{NH},~dev} \left(\bar{I}_1\right) = \frac{\mu}{2}\left(\bar{I}_1 - 3\right) = \frac{G}{2}\left(\bar{I}_1 - 3\right) = C_1\left(\bar{I}_1 - 3\right) $$ where $\mu$ (or $G$) is the shear modulus and $C_1$ is the equivalent Neo-Hookean parameter.

Parameters

Name Metafor Code Dependency
Neo-Hookean coefficient ($C_1$) HYPER_C1 TO/TM

MooneyRivlinHyperPotential

Description

The deviatoric part of the isotropic Mooney-Rivlin hyperelastic law writes $$ W^e_{\text{MR},~dev} \left(\bar{I}_1, \bar{I}_2\right) = \frac{\mu_1}{2}\left(\bar{I}_1 - 3\right) + \frac{\mu_2}{2}\left(\bar{I}_2 - 3\right) = C_1\left(\bar{I}_1 - 3\right) + C_2\left(\bar{I}_2 - 3\right) $$ where $C_1$ and $C_2$ are Mooney-Rivlin coefficients.

The equivalent shear modulus $G$ writes $$ G = \mu_1 + \mu_2 = 2\left(C_1+C_2\right) $$

Parameters

Name Metafor Code Dependency
Mooney-Rivlin coefficient ($C_1$) HYPER_C1 TO/TM
Mooney-Rivlin coefficient ($C_2$) HYPER_C2 TO/TM

YeohHyperPotential

Description

The deviatoric part of the isotropic Yeoh hyperelastic law writes $$ W^e_{\text{MR},~dev} \left(\bar{I}_1\right) = C_1\left(\bar{I}_1 - 3\right) + C_2\left(\bar{I}_1 - 3\right)^2 + C_3\left(\bar{I}_1 - 3\right)^3 $$ where $C_1$, $C_2$ and $C_3$ are Yeoh coefficients.

The equivalent shear modulus $G$ writes $$ G = 2 \left[ C_1+2C_2\left(\bar{I}_1-3\right)+3C_3\left(\bar{I}_1-3\right)^2\right] $$

Parameters

Name Metafor Code Dependency
Yeoh coefficient ($C_1$) HYPER_C1 TO/TM
Yeoh coefficient ($C_2$) HYPER_C2 TO/TM
Yeoh coefficient ($C_3$) HYPER_C3 TO/TM

Anisotropic Elastic Potentials

The AnisoElasticPotential material law regroups elastic anisotropic contibutions to the deviatoric part of the strain-energy density function in a set of $n$ principal directions as $$ W_{dev} = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, \bar{I}_2, \bar{I}_3, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, \bar{I}_2, J, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) $$

The principal directions are defined using spherical coordinates and the (radius-)longitude-lattitude convention, allowing to reduce the set of parameters to $\theta$ and $\delta$ for each direction. These angles must be given in degrees and with respect to the material reference frame as shown in the figure below.

Note that if only one of $\theta$ or $\delta$ is specified, the other one is considered 0$^\circ$.

Reminders

$$ \mathbf{M}^{(i)} = \mathbf{a}_0^{(i)} \otimes \mathbf{a}_0^{(i)} $$ $\mathbf{a}_0^{(i)} = \left[a_x^{(i)}, a_y^{(i)}, a_z^{(i)}\right]_0$ is the $i^{th}$ principal direction in the reference ($t_0$) material frame (:!:). $$ \bar{\mathbf{N}}^{(i)} = \bar{\mathbf{F}}\mathbf{M}^{(i)}\bar{\mathbf{F}}^T $$ $$ \bar{I}_4^{(i)} = \text{tr}\left(\bar{\mathbf{C}}\mathbf{M}^{(i)}\right) = \text{tr}\left(\bar{\mathbf{B}}\bar{\mathbf{N}}^{(i)}\right) = \left(\bar{\mathbf{F}}\mathbf{a}_0^{(i)}\right):\left(\bar{\mathbf{F}}\mathbf{a}_0^{(i)}\right) = J^{-\frac{2}{3}}I_4^{(i)} $$ $$ \bar{I}_5^{(i)} = \text{tr}\left(\bar{\mathbf{C}}^2\mathbf{M}^{(i)}\right) = \text{tr}\left(\bar{\mathbf{B}}^2\bar{\mathbf{N}}^{(i)}\right) = J^{-\frac{4}{3}}I_5^{(i)} $$

HolzapfelGasserOgdenHyperPotential

Description

The deviatoric part of the anisotropic Holzapfel-Gasser-Ogden hyperelastic law for the $i^{th}$ direction writes $$ W_{\text{HGO},~dev}^{(i)}\left(\bar{I}_1, \bar{I}_4^{(i)} \right) = \frac{k_1}{2k_2}\left[ e^{k_2\left< d\left(\bar{I}_1-3\right) + \left(1-3d\right)\left(\bar{I}_4^{(i)}-1\right)\right>^2}-1 \right] = \frac{k_1}{2k_2}\left[ e^{k_2\left<E^{(i)}\right>^2}-1 \right] $$ where $k_1$ and $k_2$ are material parameters characterizing the fibers and $d\in\left[0, \frac{1}{3}\right]$ is a parameter accounting for fiber dispersion.

Remarks

$$ \begin{split} \left<E^{(i)} \right> = \left\{\begin{array}{ll} E^{(i)} & \text{if } E^{(i)} \geq 0 \\ 0 & \text{if } E_\alpha < 0 \end{array} \right. \end{split} $$

Mathematical derivations, such as the analytical tangent stiffness matrix, can be found in this presentation.

Parameters

Name Metafor Code Dependency
Holzapfel-Gasser-Ogden coefficient ($k_1$) HYPER_HGO_K1 TO/TM
Holzapfel-Gasser-Ogden coefficient ($k_2$) HYPER_HGO_K2 TO/TM
Fiber dispersion parameter ($d$) HYPER_HGO_DISP TO/TM
Array of $\theta$ angles defining the principal directions [$\theta_1$,…,$\theta_n$] HYPER_FIBS_THETA -
Array of $\theta$ angles defining the principal directions [$\delta_1$,…,$\delta_n$] HYPER_FIBS_DELTA -

BonetBurtonHyperPotential

Description

The deviatoric part of the anisotropic Bonet-Burton hyperelastic law for the $i^{th}$ direction writes $$ W_{\text{BB},~dev}^{(i)}\left(\bar{I}_1, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) = \left[\alpha + \beta \left( \bar{I}_1-3 \right) + \gamma \left( \bar{I}^{(i)}_4 -1\right)\right]\left(\bar{I}^{(i)}_4 - 1\right) - \frac{1}{2}\alpha \left(\bar{I}^{(i)}_5 -1\right) $$ where $\alpha$, $\beta$ and $\gamma$ are material parameters which are related to the engineering material constants from the fibers and matrix (see Bonet-Burton material example). This model is actually directly derived from small-strain orthotropic (transversely isotropic) elasticity.

Remarks

Alternatively, another implementation of this material law is available where the hyperlastic law writes $$ W_{\text{BB}}^{(i)}\left(J, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) = \left[\alpha + \beta~\text{ln}J + \gamma \left( \bar{I}^{(i)}_4 -1\right)\right]\left(\bar{I}^{(i)}_4 - 1\right) - \frac{1}{2}\alpha \left(\bar{I}^{(i)}_5 -1\right) $$ by using the parameter HYPER_BB_USE_LNJ=true.

Note that in this case, $W_{\text{BB}}^{(i)}$ is not purely deviatoric since there is a coupling between $J$ and $\bar{I}_4^{(i)}$. Therefore, this formulation also contributes to the volumetric part of the deformation gradient.

Mathematical derivations, such as the analytical tangent stiffness matrix, and information regarding the second form of the hyperelastic law can be found in this presentation.

Parameters

Name Metafor Code Dependency
Bonet-Burton coefficient ($\alpha$) HYPER_BB_ALPHA TO/TM
Bonet-Burton coefficient ($\beta$) HYPER_BB_BETA TO/TM
Bonet-Burton coefficient ($\gamma$) HYPER_BB_GAMMA TO/TM
Use the alternative Bonet-Burton law with $\beta~\text{ln}J$
boolean: true (default)
HYPER_BB_USE_LNJ TO/TM
Array of $\theta$ angles defining the principal directions [$\theta_1$,…,$\theta_n$] HYPER_FIBS_THETA -
Array of $\theta$ angles defining the principal directions [$\delta_1$,…,$\delta_n$] HYPER_FIBS_DELTA -

Visco-elastic Potentials

GeneralizedMaxwellHyperPotential

Description

In the rheological analogy, the generalized Maxwell visco-elastic model consists in a main elastic potential (main spring) put in parallel with several Maxwell branches, which are made of a spring and a damper in series. Each Maxwell branch must be defined using the MaxwellBranch material law.

The Cauchy stress in the current configuration writes $$ \boldsymbol{\sigma}^{n+1} = \boldsymbol{\sigma}^{n+1}_0+ \sum_{j=1}^N \mathbf{h}_j^{n+1}, $$ where $\boldsymbol{\sigma}_0$ is the stress in the main elastic branch and $\mathbf{h}_j$ is the non-equilibrium stress from Maxwell branch $j$.

The non-equilibrium stress in the current configuration in a Maxwell branch writes (trapezoidal integration) $$ \begin{align*} \mathbf{h}_j^{n+1} \approx e^{-\frac{\Delta t}{\tau_j}} \frac{1}{\Delta J} \Delta F ~\mathbf{h}_j^{n}(\Delta F)^T + \Gamma_j \frac{1 - e^{-\frac{\Delta t}{\tau_j}}}{\frac{\Delta t}{\tau_j}}\left[ \boldsymbol{\sigma}^{n+1}_0 - \frac{1}{\Delta J} \Delta F ~~\boldsymbol{\sigma}^{n}_0(\Delta F)^T\right] \end{align*} $$ where $\Delta \mathbf{F} = \mathbf{F}^{n+1}\left(\mathbf{F}^{n}\right)^{-1}$ and $\Delta J = \text{det}\left(\Delta \mathbf{F}\right)$.

Parameters (GeneralizedMaxwellHyperPotential)

Name Metafor Code Dependency
Number of the main elastic potential $\sigma_0$ HYPER_MAIN_POTENTIAL_NO -
Array of numbers defining the Maxwell branches [1, 2, …] HYPER_MAXWELL_BRANCH_NUMS -

Parameters (MaxwellBranch)

Name Metafor Code Dependency
Normalized Maxwell stiffness $\Gamma$ HYPER_MAXWELL_GAMMA TO/TM
Relaxation time $\tau$ HYPER_VE_TAU TO/TM
Boolean parameter, use trapezoidal integration (=False, default) or mid-point rule (=True) HYPER_MAXWELL_USE_MPR -