This section contains all material laws which allow to define the deviatoric part of the strain-energy density function $W_{dev}$
The ElasticPotential material law regroups elastic isotropic deviatoric strain-energy density functions as
$$
W_{dev} = W^e_{dev}\left(\bar{I}_1, \bar{I}_2, \bar{I}_3\right) = W^e_{dev}\left(\bar{I}_1, \bar{I}_2, J\right)
$$
$$ \bar{I}_1 = \text{tr}\bar{\mathbf{B}} = \text{tr}\bar{\mathbf{C}} = \bar{\mathbf{F}}:\bar{\mathbf{F}} = J^{-\frac{2}{3}}I_1 $$ $$ \bar{I}_2 = \frac{1}{2}\left[ \left(\text{tr}\bar{\mathbf{B}}\right)^2 - \text{tr}\bar{\mathbf{B}}^2 \right] = \frac{1}{2}\left[ \left(\text{tr}\bar{\mathbf{C}}\right)^2 - \text{tr}\bar{\mathbf{C}}^2 \right] = J^{-\frac{4}{3}}I_2 $$ $$ \bar{I}_3 = \text{det}\bar{\mathbf{B}} = \text{det}\bar{\mathbf{C}} = 1 $$
The deviatoric part of the isotropic Neo-Hookean hyperelastic law writes $$ W^e_{\text{NH},~dev} \left(\bar{I}_1\right) = \frac{\mu}{2}\left(\bar{I}_1 - 3\right) = \frac{G}{2}\left(\bar{I}_1 - 3\right) = C_1\left(\bar{I}_1 - 3\right) $$ where $\mu$ (or $G$) is the shear modulus and $C_1$ is the equivalent Neo-Hookean parameter.
| Name | Metafor Code | Dependency |
|---|---|---|
| Neo-Hookean coefficient ($C_1$) | HYPER_C1 | TO/TM |
The deviatoric part of the isotropic Mooney-Rivlin hyperelastic law writes $$ W^e_{\text{MR},~dev} \left(\bar{I}_1, \bar{I}_2\right) = \frac{\mu_1}{2}\left(\bar{I}_1 - 3\right) + \frac{\mu_2}{2}\left(\bar{I}_2 - 3\right) = C_1\left(\bar{I}_1 - 3\right) + C_2\left(\bar{I}_2 - 3\right) $$ where $C_1$ and $C_2$ are Mooney-Rivlin coefficients.
The equivalent shear modulus $G$ writes $$ G = \mu_1 + \mu_2 = 2\left(C_1+C_2\right) $$
| Name | Metafor Code | Dependency |
|---|---|---|
| Mooney-Rivlin coefficient ($C_1$) | HYPER_C1 | TO/TM |
| Mooney-Rivlin coefficient ($C_2$) | HYPER_C2 | TO/TM |
The deviatoric part of the isotropic Yeoh hyperelastic law writes $$ W^e_{\text{MR},~dev} \left(\bar{I}_1\right) = C_1\left(\bar{I}_1 - 3\right) + C_2\left(\bar{I}_1 - 3\right)^2 + C_3\left(\bar{I}_1 - 3\right)^3 $$ where $C_1$, $C_2$ and $C_3$ are Yeoh coefficients.
The equivalent shear modulus $G$ writes $$ G = 2 \left[ C_1+2C_2\left(\bar{I}_1-3\right)+3C_3\left(\bar{I}_1-3\right)^2\right] $$
| Name | Metafor Code | Dependency |
|---|---|---|
| Yeoh coefficient ($C_1$) | HYPER_C1 | TO/TM |
| Yeoh coefficient ($C_2$) | HYPER_C2 | TO/TM |
| Yeoh coefficient ($C_3$) | HYPER_C3 | TO/TM |
The AnisoElasticPotential material law regroups elastic anisotropic contibutions to the deviatoric part of the strain-energy density function in a set of $n$ principal directions as
$$
W_{dev} = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, \bar{I}_2, \bar{I}_3, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) = \sum^n_{i=1} W_{dev}^{(i)} \left(\bar{I}_1, \bar{I}_2, J, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right)
$$
At the moment, a maximum of 3 separate principal directions can be given to the material law.
$$
\mathbf{M}^{(i)} = \mathbf{a}_0^{(i)} \otimes \mathbf{a}_0^{(i)}
$$
$\mathbf{a}_0^{(i)} = \left[a_x^{(i)}, a_y^{(i)}, a_z^{(i)}\right]_0$ is the $i^{th}$ principal direction in the reference ($t_0$) material frame ().
$$
\bar{\mathbf{N}}^{(i)} = \bar{\mathbf{F}}\mathbf{M}^{(i)}\bar{\mathbf{F}}^T
$$
$$
\bar{I}_4^{(i)} = \text{tr}\left(\bar{\mathbf{C}}\mathbf{M}^{(i)}\right) = \text{tr}\left(\bar{\mathbf{B}}\bar{\mathbf{N}}^{(i)}\right) = \left(\bar{\mathbf{F}}\mathbf{a}_0^{(i)}\right):\left(\bar{\mathbf{F}}\mathbf{a}_0^{(i)}\right) = J^{-\frac{2}{3}}I_4^{(i)}
$$
$$
\bar{I}_5^{(i)} = \text{tr}\left(\bar{\mathbf{C}}^2\mathbf{M}^{(i)}\right) = \text{tr}\left(\bar{\mathbf{B}}^2\bar{\mathbf{N}}^{(i)}\right) = J^{-\frac{4}{3}}I_5^{(i)}
$$
The deviatoric part of the anisotropic Holzapfel-Gasser-Ogden hyperelastic law for the $i^{th}$ direction writes $$ W_{\text{HGO},~dev}^{(i)}\left(\bar{I}_1, \bar{I}_4^{(i)} \right) = \frac{k_1}{2k_2}\left[ e^{k_2\left< d\left(\bar{I}_1-3\right) + \left(1-3d\right)\left(\bar{I}_4^{(i)}-1\right)\right>^2}-1 \right] = \frac{k_1}{2k_2}\left[ e^{k_2\left<E^{(i)}\right>^2}-1 \right] $$ where $k_1$ and $k_2$ are material parameters characterizing the fibers and $d\in\left[0, \frac{1}{3}\right]$ is a parameter accounting for fiber dispersion.
$$ \begin{split} \left<E^{(i)} \right> = \left\{\begin{array}{ll} E^{(i)} & \text{if } E^{(i)} \geq 0 \\ 0 & \text{if } E_\alpha < 0 \end{array} \right. \end{split} $$
Mathematical derivations, such as the analytical tangent stiffness matrix, can be found in this presentation.
| Name | Metafor Code | Dependency |
|---|---|---|
| Holzapfel-Gasser-Ogden coefficient ($k_1$) | HYPER_HGO_K1 | TO/TM |
| Holzapfel-Gasser-Ogden coefficient ($k_2$) | HYPER_HGO_K2 | TO/TM |
| Fiber dispersion fraction ($d$) | HYPER_HGO_DISP | TO/TM |
| Direction of the first principal (fiber) direction ($a^1_x$) | HYPER_FIB1_X | - |
| Direction of the first principal (fiber) direction ($a^1_y$) | HYPER_FIB1_Y | - |
| Direction of the first principal (fiber) direction ($a^1_z$) | HYPER_FIB1_Z | - |
| Direction of the second principal (fiber) direction ($a^2_x$) | HYPER_FIB2_X | - |
| Direction of the second principal (fiber) direction ($a^2_y$) | HYPER_FIB2_Y | - |
| Direction of the second principal (fiber) direction ($a^2_z$) | HYPER_FIB2_Z | - |
| Direction of the third principal (fiber) direction ($a^3_x$) | HYPER_FIB3_X | - |
| Direction of the third principal (fiber) direction ($a^3_y$) | HYPER_FIB3_Y | - |
| Direction of the third principal (fiber) direction ($a^3_z$) | HYPER_FIB3_Z | - |
The deviatoric part of the anisotropic Bonet-Burton hyperelastic law for the $i^{th}$ direction writes $$ W_{\text{BB},~dev}^{(i)}\left(\bar{I}_1, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) = \left[\alpha + \beta \left( \bar{I}_1-3 \right) + \gamma \left( \bar{I}^{(i)}_4 -1\right)\right]\left(\bar{I}^{(i)}_4 - 1\right) - \frac{1}{2}\alpha \left(\bar{I}^{(i)}_5 -1\right) $$ where $\alpha$, $\beta$ and $\gamma$ are material parameters which are related to the engineering material constants from the fibers and matrix (see Bonet-Burton material example). This model is actually directly derived from small-strain orthotropic (transversely isotropic) elasticity.
Alternatively, another implementation of this material law is available where the hyperlastic law writes
$$
W_{\text{BB}}^{(i)}\left(J, \bar{I}_4^{(i)}, \bar{I}_5^{(i)} \right) = \left[\alpha + \beta~\text{ln}J + \gamma \left( \bar{I}^{(i)}_4 -1\right)\right]\left(\bar{I}^{(i)}_4 - 1\right) - \frac{1}{2}\alpha \left(\bar{I}^{(i)}_5 -1\right)
$$
by using the parameter HYPER_BB_USE_LNJ=true.
Note that in this case, $W_{\text{BB}}^{(i)}$ is not purely deviatoric since there is a coupling between $J$ and $\bar{I}_4^{(i)}$. Therefore, this formulation also contributes to the volumetric part of the deformation gradient.
Mathematical derivations, such as the analytical tangent stiffness matrix, and information regarding the second form of the hyperelastic law can be found in this presentation.
| Name | Metafor Code | Dependency |
|---|---|---|
| Bonet-Burton coefficient ($\alpha$) | HYPER_BB_ALPHA | TO/TM |
| Bonet-Burton coefficient ($\beta$) | HYPER_BB_BETA | TO/TM |
| Bonet-Burton coefficient ($\gamma$) | HYPER_BB_GAMMA | TO/TM |
| Use the alternative Bonet-Burton law with $\beta~\text{ln}J$ boolean: true (default) | HYPER_BB_USE_LNJ | TO/TM |
| Direction of the first principal (fiber) direction ($a^1_x$) | HYPER_FIB1_X | - |
| Direction of the first principal (fiber) direction ($a^1_y$) | HYPER_FIB1_Y | - |
| Direction of the first principal (fiber) direction ($a^1_z$) | HYPER_FIB1_Z | - |
| Direction of the second principal (fiber) direction ($a^2_x$) | HYPER_FIB2_X | - |
| Direction of the second principal (fiber) direction ($a^2_y$) | HYPER_FIB2_Y | - |
| Direction of the second principal (fiber) direction ($a^2_z$) | HYPER_FIB2_Z | - |
| Direction of the third principal (fiber) direction ($a^3_x$) | HYPER_FIB3_X | - |
| Direction of the third principal (fiber) direction ($a^3_y$) | HYPER_FIB3_Y | - |
| Direction of the third principal (fiber) direction ($a^3_z$) | HYPER_FIB3_Z | - |
The CombinedElasticPotential material law allows to combine two deviatoric hyperelastic potentials together as
$$
\boldsymbol{\sigma}^e = \boldsymbol{\sigma}^e_1 + \boldsymbol{\sigma}^e_2
$$
This can be illustrated using the following analogous rheological element
The main purpose of this element is to create anisotropic hyperelastic materials, as they are often composed of an isotropic (generally a Neo-Hookean) matrix component and an anisotropic fibrous component (see anisotropic material examples). Nonetheless, this material law can also be used to add two or more deviatoric potentials, since CombinedElasticPotential can combine with itself.